
The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

Tasks Management Algorithm for Distributed System

A. Kumar
1
 and P.K. Yadav

2

1 Department of Mathematical Sciences and Computer Applications

Bundelkhand University, Jhansi-284128, Uttar Pradesh (India)
dravanishkumar@yahoo.com

2 Central Building Research Institute, Roorkee-247667, Uttarakhand (India)

prd_yadav@rediffmail.com

Abstract

The term "Distributed Real-Time Computing System” is described whenever number of computers

interconnected in some fashion such that a program or procedure utilizes this distributed but combined power

and gets executed in Real Time. The term has different meanings with regard to different systems, because

processors can be interconnected in many ways for various reasons. In its most general form, the word

distribution implies that the processors are fixed in geographically separated locations. Occasionally, the term is

also applied to an operating environment using multiple mini-computers not connected with each other with the

help of physical communication lines but are connected through satellite. In a Distributed Real Time System

(DRTS), the single communication channel share by all the processors for Inter-Processor Communication

(IPC). A program whose execution is distributed among several processors in a distributed system has the total

processing cost equal to the sum of processors costs and Inter Tasks Communication Cost (ITCC), which are

function of the amount of data transmitted. An optimal assignment is a distribution of modules that has lowest

total Execution Cost (EC). The model discussed in this paper provides an optimal solution for assigning a set of

“m” tasks to a set of “n” processors where m >> n, in such a way that allocated load on all processors is

balanced according to the relative speed. Distributed Real-Time System finds extensive applications in the

faculties, where large amount of data is to be processed in relatively short period of time, or where Real-Time

computations are required. Meteorology, Cryptography, Image Analysis, Signal Processing, Solar and Radar

Surveillance, Simulation of VLSI circuits and Industrial process monitoring are areas of such applications.

These applications require not only very fast computation speeds but also different strategies involving

distributed task allocation systems. In such applications the quality of the output is proportional to the amount of

Real-Time computations. In a Distributed Real-Time System the execution of a program may be distributed

among several processing elements to reduce the overall system cost by taking the advantage of heterogeneous

computational capabilities and other resources within the system. For the optimal utilization of processors

systematic allocation of task is necessary.

Keyword: Distributed real time system; Task assignment; Inter-task communication cost; Execution cost

1. Introduction

 The term "Distributed Real-Time Processing System” (DRTS) is described whenever several computers

interconnected in some fashion such that a program or procedure utilizes this distributed but combined power

and gets executed in Real Time. The term has different meanings with regard to different systems, because

processors can be interconnected in many ways for various reasons. In its most general form, the word

distribution implies that the processors are fixed in geographically separated locations. Occasionally, the term is

also applied to an operating environment using multiple mini-computers not connected with each other with the

help of physical communication lines but are connected through satellite. A user-oriented definition have been

discussed of distributed computing is "Multiple Computers, utilized cooperatively to solve problems" [1, 2].

Distributed Real-Time System finds extensive applications in the faculties, where large amount of data is to be

processed in relatively short period of time, or where Real-Time computations are required. Meteorology,

Cryptography, Image Analysis, Signal Processing, Solar and Radar Surveillance, Simulation of VLSI circuits

and Industrial process monitoring are areas of such applications. These applications require not only very fast

computation speeds but also different strategies involving distributed task allocation systems. In such

applications the quality of the output is proportional to the amount of Real-Time computations. In a DRTS, the

execution of a program may be distributed among several processing elements to reduce the overall system time

by taking the advantage of heterogeneous computational capabilities and other resources within the system. For

the optimal utilization of processors Systematic allocation of task is necessary. Allocation of tasks in a DRTS

may be done by following two ways:

 Static Allocation: In static allocation when a task is assigned to processor, it remains there while the

characteristic of the computation change and a new assignment must be computed. The phrase “characteristics

of the computation” means the ratios of the times that a program spends in different parts of the program. Thus

- 37 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

in a static allocation, one is interested in finding the assignment pattern that holds for the life time of a program,

and result in the optimum value of the measure of effectiveness. These problems may be categorized in static [3

-13].

 Dynamic Allocation: In order to make the best use of resources in a DRTS, it is essential to reassign

modules or tasks dynamically during program execution, so as to the advantage of changes in the local reference

patterns of the program [14-18].

 Although the dynamic allocation has potential performance advantages, Static allocation is easier to realize

and less complex to operate. Several other methods have been reported in the literature, such as, Integer

programming [19, 21], Branch and bound technique [22-23], Matrix reduction technique [7, 11, 13], reliability

evaluation to deal with various design and allocation issues in a DPS by [24-34]. The main objective of this

paper is to minimize the total program execution time by optimal utilization of processors in such a way the

allocated load on all the processors should be balance. The developed model is programmed in Visual C++ and

implemented the several sets of input data are used to test the effectiveness and efficiency of the algorithm. It is

found that the algorithm is suitable for arbitrary number of processors with the random program structure.

2. Task Assignment Problem

 The allocation of tasks in a DRTS is the fundamental requirement for optimal utilization of processors. The

specific task allocation problem being addressed as follows: Considered an application program consists a set of

“m” tasks T = {t1, t2,….tm} and a DRTS consisting a set of “n” processors P = {p1, p2,….pn}, interconnected by

communication links. The processor graph is a convenient abstraction of the processors together with

interconnection network. It has processors as nodes and there is a weighted edge between two nodes if the

corresponding processors can communicate with each other. The weight wij on the edge between processors pi

and pj represent the delay involved in sending or receiving the message of unit length from one processor to

another. In order to have an approximate estimate of this delay, irrespective of the two processors, we use the

average of the weights on all the edges in the processor graph. This is called the average unit delay. The

processing cost of these tasks on all the processors is given in the form of Execution Cost Matrix [ECM (,)] of

order m x n. The ITCC is taken in the form of a symmetric matrix named as Inter Task Communication Cost

Matrix [ITCCM (,)], which is of order m. The process of allocation problem can be formulated by a function

Aalloc, from the set of tasks to the set of processors. Aalloc: T→P, where Aalloc (i) = j, if the task ti is assigned

to processor pj, 1≤ I ≤ m, 1≤ j ≤ n. The load balancing, which involves sending load from overloaded processors

to under loaded processors, should be carried out with due regard for communication overhead so that it is

accomplished as quickly as possible. It becomes essential to optimize the overall throughput of the processors

by allocating the tasks in such a way that the allocated load on all the processors shall have to be balanced.

Therefore, the systematic allocation of tasks in a DPS is the fundamental requirement for efficient execution of

tasks. In distributed processing environments the services provided for the network reside at multiple sites.

Instead of single large machine being responsible for all aspects of process, each separate processor handles

subset. In the distributed environments the program or tasks are also often developed with the subsets of

independent units under various environments. While there are several components related to the tasks

allocation problem, we are primarily concentrated to efficient utilization of processors and minimize the total

program execution cost. The proposed methodology includes:

 i. Identification of Initial Assignments

 ii. Identification of Final Assignment

 iii. Calculate the Execution Cost of each Processor

 iv. Calculate the Inter Tasks Communication Cost of each Processor

 v. Evaluation of Optimal busy time of the Distributed Real Time System

3. Definitions:
3.1 Execution Cost:

 The execution cost eij Where 1  i  m, 1  j  n of each task ti depends on the processor pj to which it is

assigned and the work to be performed by each of tasks of that processor pj.

3.2 Inter Tasks Communication Cost:

 The Inter Task Communication Time Cik of the interacting tasks ti and tk is incurred due to the data units

exchanged between them during the process of execution

3.3 Response Time Cost:

 The Response Time Cost (RTC) is a function of the amount of computation to be performed by each

processor. This function is defined by considering the processor with the heaviest aggregate computation and

communication loads. The degree to which communication latency will be hidden by overlapping computation

with communication depends on such factors as the hardware attributes of the DRTS and the module scheduling

methodology that is employed

- 38 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

4. Assumptions:

 To keep the algorithm reasonable in size several assumptions have been made while designing the algorithm.

A program is assumed to be collection of “m” tasks to be executed on a set of “n” processors, which have

different processing capabilities. A task may be portion of an executable code or a data file. The number of tasks

to be allocated is more than the number of processors (m >> n), as normally is the case in the real life. It is

assumed that the execution cost of a task on each processor is known, if a task is not executable on any of the

processor due to absence of some resources. The execution cost of that task on that processor is taken to be ()

infinite. We assume that once a task has completed is execution on a processor, the processor stores the output

data of the task in its local memory, if the data is needed by some another task being computed on the same

processor, it reads the data from the local memory. The overhead incurred by this is negligible, so for all

practical purposes we will consider it as zero. Using this fact, the algorithm tries to assign heavily

communicating tasks to the same processor. Whenever groups of tasks or cluster are assigned to the same

processor, the Inter tasks communication cost between them is zero. Completion of a program from

computational point of view means that all related tasks have got executed.

5. Proposed Method

 To determine the allocation, initially select those tasks “n” which has minimum ITCC and store the tasks in

Ttasks(j) (where j = 1,2,…,n) and also store the remaining m-n tasks in another linear array TNtasks(k) (where k =

1,2,…,m-n). Reduce the ECM(i,j) (where i = 1,2,…n and j = 1,2,…m) in n x n by deleting tasks stored in

TNtasks(k) which is the intersection of Ttasks(i). Determine the initial assignment apply the algorithm developed

by Kumar et al [35]. The initial allocation is stored in an array Tass(j) (where j = 1,2,…,n) and also the processor

position are stored in a another linear array ALLOC(j). Get the value of TTASK (j) by adding the value of

ALLOC (j) if a task is assigned to a processor otherwise continues. The overall Execution time of a given

allocation (Alloc) is then obtained by equation (1) and for each Processor Execution Time (PET) is defined by

equation (2)





mi

)i(Aalloc,ie)Aalloc(EC
1 (1)

 






JTSi
mi

)i(Aalloc,ij e)Aalloc(PEC
1

 (2)

 Where TSj= {i: Aalloc (i) = j, j=1, 2…n}

The Tasks stored in TNtasks(k) are restored in Tnon-ass(k) (where k = 1,2,…,m-n). The Mean Service Rate [MSR]

of the processors in terms of Tass(j) is then calculated by using the equation (3) and store the results in MSR(j)

(where j = 1,2,…,n).

 j)Aalloc(EC
)j(MSR

1


j=1, 2………n (3)

Once the MSR (j) is calculated, select the processor, which has maximum value of MSR say pj i.e. fastest

processor. If the value of MSR is equal or more than one processor then select a processor randomly for next

assignment. Find out the tasks which is assigned to processor pj (say ti), and than select a task from Tnon-ass () for

assignment which has maximum communication with ti (say tk). If the task tk has the value of EC on processor

pj is   as, then assign the task tk to the processor pj. If the value of EC for tasks tk on processor pj = , than

select next heavely communicated tasks for assignment. After assigning the task modify the PEC and MSR of

processor pj by using the equation (1 & 2) respectively. Store the assignment and their position in Tass() and

ALLOC(j)) respectively and get the value of TTASK (j) by adding the value of ALLOC (j).Modify the Tnon-ass()

by deleting the tasks tk. This process of assignment is continuing till the remaining “m-n” tasks are get allocated.

The overall mean service time and throughout of the processors are calculated by using the equation (4) and (5)

respectively. Store the results of mean service time and throughout in the linear arrays MST (j) and TRP (j),

where j=1, 2…….,n respectively.

)n,...12where(
)j(MSR

1
)j(MST  j

 (4)

j)Aalloc(EC

)j(TTASK
)j(TRP 

j=1, 2…….n (5)

 where TTASK (j) is number of tasks assigned to processor pj.

- 39 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

The overall inter-task communication Cost (ITCC) of a given allocation Aalloc is then calculated by equation

(6) and for each Processor Inter-Task Communication Cost (PITCC) is then given by equation (7)










)j(Aalloc)i(Aalloc
mji

mi
)j(Aalloc),i(Aallocc)Aalloc(ITCC

1
1

 (6)










)k(Aallocj)i(Aalloc
mji

mi
)k(Aalloc),i(Aallocc

1
1

j(Aalloc) PITCC

 (7)

 RTC (Aalloc) = {EC (Aalloc) j +PITCC (Aalloc) j} (8)

4. Implementation of the model:

 To justify the application and usefulness of the present method an example of a distributed real time system

is considered consisting of a set of “n = 3” processors P = {p1, p2, p3} connected by an arbitrary network. The

processors only have local memory and do not share any global memory. A set of “m = 11” executable tasks T =

{t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11} which may be portion of an executable code or a data file. The execution time

of each task on each processors has been taken in the form of ETM (,) of order m x n. The Inter tasks

communication time between the tasks has been taken in the form of ITCCM (,) of order m.

 p1 p2 p3

 t1 6 3 5

 t2 4 2 3

 t3 3 1 2

Execution Cost Matrix = ECM(,) = t4 5 2 

 t5 3 4 2

 t6 6  6

 t7 5 6 7

 t8  2 5

 Inter Tasks Communication Cost Matrix =

 t1 t2 t3 t4 t5 t6 t7 t8

 t1 0 3 4 2 6 8 1 0

 t2 3 0 0 0 0 0 0 5

 t3 4 0 0 4 3 2 0 0

ITCCM(,) = t4 2 0 4 0 5 3 2 5

 t5 6 0 3 5 0 0 0 0

 t6 8 0 2 3 0 0 6 8

 t7 1 0 0 2 0 6 0 5

 t8 0 5 0 5 0 8 5 0

After Implementation of the model following optimal assignment are obtained and shown in Table 1

 Table 1:

Tasks Processor

t1 p1

t2 p2

t3 p3

t4 p2

t5 p3

t6 p3

T7 p1

T8 p2

- 40 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

The optimization results from the algorithm ensure overall system cost as well as load on the processors are

optimally balanced. Table 1 and Fig. 1 are shows the optimal assignment of tasks to the processors. Table 2

shows the final Results of the algorithm.

Fig. 1 Optimal assignment graph

 Table 2: Processors wise EC and ITCC and total of EC and ITCC

Processors EC ITCC
Mean

service rate

Throughput of

the processors

Mean

service

time

TOTAL

1 2 3 4 5 6 (3+6)

p1 11 36 0.091 0.182 10.989 37.989

p2 6 30 0.167 0.501 5.988 35.988

p3 10 44 0.100 0.300 10.000 54.000

The mean service rate and throughput of the processors are given in form of graph in Fig. 2. The Maximum

busy time of the system is 54, which is related to processor p3 depicted in Fig. 3.

Fig. 2 Mean service rate and throughput of the processors

p1

p2

p3

p1p1

p2p2

p3p3

t1t1

t2t2

t4t4

t3t3

t7t7

t5t5

t6t6

t8t8

0.80

1.00

1.20

6

2

5
2

2

2

2

6

- 41 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

Fig. 3 Maximum busy time of the system

5. Conclusions

The present paper deals with a simple yet efficient mathematical and computational algorithm to identify the

Optimal Allocation of tasks for evaluation of performance of the Distributed Real-Time Systems. A simple

procedure has been developed to determine the following:

 1. Systematic Allocation of tasks in DPS

 2. Mean service rate,

 3. Mean service time

 4. Throughput of the processors

Table 1 shows that 2 tasks are executing on processor p1 3 tasks are executing on p3 and 2 tasks are executing on

p3. Table 2 shows that results of the algorithm form the table it is concluded that maximum busy time of the

systems as 54 which is related to processor p3. Therefore, the Optimal RTC of the DTRS is 54. Throughput of

the processors is 0.182, 0.501 and 0.300. The average throughput of the system is 0.328.

The Performance of the algorithm is compared with [13]. The algorithm suggested in [13] is not considered the

criteria of load balancing and proper utilization of each processor whereas our model considered both the issues.

The run time complexity of the algorithm suggested by R.Y. Richard et al [22] is o (n
m
) which to high and the

show the problem is NP-Hard. The algorithm suggested by G. Sagar et al. [13] runs o (m
2
n). The run complexity

of the algorithm presented in this paper is o [1/2(5m
2
+2mn)], which is much less then that of [13]. Table 3 and

figure 4 represents the complexity comparisons of the algorithms.

 Table 3: Results of run time complexity of the algorithms

Number of Tasks (m) Number of processors (n)
Run time complexity of the algorithms

G. Sagar. et al. [13] Present Model

5 3 75.0 78.0

6 3 108.0 108.0

7 4 196.0 151.0

8 4 256.0 192.0

9 5 405.0 248.0

10 5 500.0 300.0

11 6 726.0 396.0

12 6 864.0 432.0

13 7 1183.0 514.0

14 7 1372.0 588.0

15 8 1800.0 683.0

16 8 2048.0 768.0

- 42 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

Fig. 4 Comparisons of the complexity of the algorithms

References
[1] K.K. Bhutani, “Distributed Computing”, The Indian Journal of Telecommunication, pp. 41-44, 1994.

[2] B.R. Sitaram, “Distributed Computing – A User’s View Point”, CSI Communications, Vol.-18 No. 10,

 pp.26,28, 1965.

[3] Baca, D.F. (1989), Allocation Modules to Processor in a Distributed System, IEEE Transactions on

 Software Engineering, vol. SE-15, 1427-1436.

[4] Coit, D.W. and Smith, A.E. (1996), Reliability Optimization of Series Parallel Systems using a Genetic

 Algorithm, IEEE Transactions on Reliability, vol. R-45, 254-260.

[5] Kumar, V. Singh, M.P. and Yadav, P.K. (1995), A Fast Algorithm for Allocating Tasks in Distributed

 Processing System, Proc. of the 30th Annual Convention of CSI, held at Hyderabad, India 347-358.

[6] Kumar, V. Singh, M. P. and Yadav, P.K. (1995), An Efficient Algorithm for Allocating Tasks to

 Processors in a Distributed System, Proc. of the 19th National system conference, SSI, held at

 Coimbatore, India 82-87.

[7] Kumar, V. Yadav, P.K. and Bhatia, K. (1998), Optimal Task Allocation in Distributed Systems owing to

 Inter Tasks Communication Effects, Proc. of the 33rd Annual convention of system society of India, held

 at New Delhi, India 369-378.

[8] Singh, M.P., Kumar, V. and Kumar, A. (1999), An Efficient Algorithm for Optimizing Reliability Index

 in Tasks-Allocation, Acta Ciencia Indica, vol. xxv m, 437-444.

[9] Srinivasan, Santhanam and Jha. K. Niraj (1999), Safety and Reliability Driven Task Allocation in

 Distributed System, IEEE Transactions on Parallel and Distributed Systems, vol. 10, 238-250.

[10] Tillman, F. A., Hwang, C. L. and Kuo, W. (1977), Determining Component Reliability and Redundancy

 for Optimum System Reliability, IEEE Transactions on Reliability, vol. R-26, 162-165.

[11] Yadav, P. K. and Kumar, Avanish (2002), An Efficient Static Approach for Allocation through

 Reliability Optimization in Distributed Systems”, presented at the International conference on Operations

 Research for Development (ICORD2002) held at Chennai.

[12] Zahedi, E., and Ashrafi, N. (1991), Software Reliability Allocation based on Structure, Utility, Price and

 Cost, IEEE Transactions on Software Engineering, vol. -17, 345-356.

[13] Sagar, G., and Sarje, A.K. (1991), Task Allocation Model for Distributed System, Int. J. System Science,

 vol. 22, 1671-1678.

[14] Bokhari, S.H. (1979), Dual Processor Scheduling with Dynamic Re-Assignment, IEEE Transactions on

 Software Engineering, vol. SE-5, 341-349.

[15] Casavent, T.L. and Kuhl, J. G. (1988), A Taxonomy of Scheduling in General Purpose Distributed

 Computing System, IEEE Transactions on Software Engineering, vol. SE-14, 141-154.

[16] Kumar, Avanish (1999), Optimizing for the Dynamic Task Allocation”, published to the proceedings of

 the III Conference of the International Academy of Physical Sciences held at Allahabad, 281-294.

[17] Kumar, V. Singh, M.P. and Yadav, P.K. (1996), An Efficient Algorithm for Multi-processor Scheduling

 with Dynamic Reassignment, Proc. of the 6th National seminar on theoretical Computer Science, held at

 Banasthally Vidyapeeth, India 105-118.

[18] Rotithor, H.G. (1994), Taxonomy of Dynamic Task Scheduling in Distributed Computing Systems, IEEE

 Proc. Computer Digit Tech., vol. 14, 1-10.

[19] Misra, K. B. and Sharma, U., (1991) An Efficient Algorithm to solve Integer Programming Problem

 arising in System Reliability Design, IEEE Transactions on Reliability, vol. R-40, 81-91.

0

500

1000

1500

2000

2500

5,3 6,3 7,4 8,4 9,5 10,5 11,6 12,6 13,7 14,7 15,8 16,8

Task,Processor

R
u

n
 t

im
e

C
o

m
p

le
xi

ty

G. Sagar et al. [13] Present Algorithm

- 43 -

The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand

[20] Bulfin, R. L. and Liu, C. Y. (1985), Optimal Allocation of Redundant Components for large Systems,

 IEEE Transactions on Reliability, vol. R-34, 241-247.

[21] Chu, W.W. (1969), Optimal File Allocation in a Multiple Computing System, IEEE Transactions on

 Computer, vol. C-18, 885-889.

[22] Richard R.Y., Lee, E.Y.S. and Tsuchiya, M. (1982), A Task Allocation Model for Distributed Computer

 System, IEEE Transactions on Computer, vol. C-31, 41-47.

[23] Dessoukiu-EI, O.I. and Huna, W. H., (1980), Distributed Enumeration on Network Computers, IEEE

 Transactions on Computer, vol. C-29. 818-825.

[24] Fitzgerald, Kent, Latifi, Shahram and Srimani, Pradip K. (2002), Reliability Modeling and Assessment of

 the Star-Graph Networks, IEEE Transactions on Reliability, vol. R-51, 49-57.

[25] Fyffe, D.E., Hines, W. W. and Lee, N. K. (1968), System Reliability Allocation and Computational

 Algorithm, IEEE Transactions on Reliability, vol. R-17, 64-69.

[26] Ghare, P. M. and Taylor, R. E. (1969), Optimal Redundancy for Reliability in Series Systems,

 Operational Res., vol. 17, 838-847.

[27] Kumar, Avanish (2001), An Algorithm for Optimal Index to Tasks Allocation Based on Reliability and

 cost”, published to the proceedings of International Conference on Mathematical Modeling held at

 Roorkee, 150-155.

[28] Lin, Min-Sheng (2002), A Linear-time Algorithm for Computing K-terminal Reliability on Proper

 Interval Graphs, IEEE Transactions Reliability, vol. R-51, 58-62.

[29] Lyu, Michael R., Rangarajan, Sampath and Moorsel, Aad P. A. Van (2002), Optimal Allocation of test

 Resources for Software Reliability growth modeling in Software Development, IEEE Transactions on

 Reliability, vol. R-51, 183-192.

[30] Nakagawa, Y. and Miyazaki, S. (1981), Surrogate Constraints Algorithm for Reliability Optimization

 Problems with two Constraints, IEEE Transactions on Reliability, vol. R-30, 175-181.

[31] Ormon, Stephen W., Cassady, C. Richard and Greenwood, Allen G. (2002), Reliability Prediction model

 to Support Conceptual Design, IEEE Transactions on Reliability, vol. R-51, 151-157.

[32] Painton, L. and Campbell, J. (1992), Genetic Algorithm in Optimization of System Reliability, IEEE

 Transactions on Reliability, vol. R-44, 172-178.

[33] Peng, Dar-Tezen, Shin, K. G. and Abdel, Zoher T. F. (1997), Assignment Scheduling Communication

 Periodic Tasks in Distributed real time System, IEEE Transactions on software Engg. vol. SE-13, 745-

 757.

[34] Ramesh, Anapathur V., Twigg, David W., Sandadi, Upender R. and Sharma, Tilak C. (2002), Reliability

 Analysis of System with Operation Time Management, IEEE Transactions on Reliability, vol. R-51, 39-

 48.

[35] Yadav, P. K., Kumar, Avanish and Singh, M. P., “An Algorithm for Solving the Unbalanced Assignment

 Problems”, International Journal of Mathematical Sciences, Vol. 12(2), pp. 447-461 2004.

- 44 -

