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Abstract: In this paper the effects of variable viscosity and variable thermal conductivity of unsteady laminar 

incompressible mixed convection flow of an electrically conducting fluid at the stagnation of a two-dimensional 

body and an axi-symmetric body in the presence of applied magnetic field is investigated.  Both prescribed wall 

temperature and prescribed heat flux condition have been considered. The problem was studied under the 

effects of variable viscosity, and variable thermal conductivity. Using a similarity transformation, the 

governing fundamental equations are approximated by a system of nonlinear ordinary differential equations. 

The resultant system of ordinary differential equations is then solved numerically using Runge-Kutta shooting 

method with guessed initial conditions. Details of the velocity and temperature fields as well as the local skin 

friction and the local Nusselt number for various values of the parameters of the problem are presented. The 

results presented, demonstrate quite clearly that Ge and Gr, which are indicator of the variation of viscosity and 

thermal conductivity with temperature have a substantial effect on the drag and heat transfer characteristics as 

well as the velocity and temperature distributions within the boundary layer.  

Mathematics Subject Classification: 76.  

Key words: variable viscosity, variable thermal conductivity, viscosity parameter, conductivity 

parameter, mixed convection. 

1. Introduction: 
 In the study of convective heat transfer, it is customary to treat the problem as either pure 

forced convection or pure free convection. The study of mixed convection flow arises in 

many transport processes in nature and in engineering devices such as nuclear reactors cooled 

during emergency shutdown, solar central receivers exposed to winds, electronic devices 

cooled by fans, heat exchangers placed in a low-velocity environment. The mixed convection 

in stagnation flows become important when the buoyancy forces due to the temperature 

difference between the wall and free stream become large. In such a situation the flow and 

thermal fields are not symmetric with respect to the stagnation line. 

 The mixed convection around heated vertical surfaces has been studied by several 

authors. Sparrow et al [1] studied the combined and free convection flow and heat transfer 

about a non-isothermal body subject to a non-uniform free stream velocity. A similarity 

solution for mixed convection from horizontal impermeable surface in saturated porous 

media was studied by Cheng [2]. Mixed convection induced in a gas flowing past a hot 

horizontal flat plate was studied by Pop et al [3]. Studies on forced and free mixed convection 

boundary layer flow with uniform suction or injection on a vertical plate was carried out by 

Watanabe [4]. Laminar mixed convection over horizontal flat plate with power-law variation 

in surface temperature was studied by Risbeck et al [5]. 

 Also similarity solution of mixed convection around vertical surfaces has been studied 

by Ramachandran et al [6], Mahmood and Merkin [7] and Merkin and Mahmood [8]. Non-

similarity solutions for mixed convection from horizontal surface in a porous medium 

variable surface heat flux were investigated by Aldoss et al [9]. All of the above studies deal 

with steady flow. The analogous unsteady case was studies by Surma Devi et al [10]. Also 

unsteady mixed convection flow at the stagnation point was studied by Kumari et al [11], 

Ibrahim [12] Ahmad and Nazar [13], Ali  F. M. et al [14] in various ways. 

 All the above discussions are based on the constant physical properties. Lawal and 

Majumder [15] and Etemad et al [16] showed that assumption of constant viscosity exhibits 
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substantial deviation from variable viscosity results. Also the viscous dissipation can be very 

significant. The effects of temperature dependent viscosity and viscous dissipation on laminar 

convection heat transfer of a semi-circular duct were examined and discussed by Etemad et al 

[17]. Kafoussias et al [18] have studied the thermal-diffusion and diffusion-thermo effects on 

the mixed free-forced convective and mass transfer steady laminar boundary-layer flow along 

a vertical semi-infinite isothermal flat plate, when the viscosity of the fluid varies with 

temperature Sharma and Sing [19] investigated the effects of variable thermal conductivity 

and heat source / sink on MHD flow near a stagnation point on a linearly stretching sheet. 

  The aim of this work is to study the effects of variable viscosity and variable thermal 

conductivity of unsteady laminar incompressible mixed convection flow of an electrically 

conducting fluid at the stagnation of a two-dimensional body and an axi-symmetric body in 

the presence of applied magnetic field. The effect of induced magnetic field has been 

included in the analysis. Both prescribed wall temperature and prescribed heat flux condition 

have been considered. It has been found that if the free stream velocity, applied magnetic 

field and square root of wall temperature vary inversely as a function of time (i.e. (1- λt*)
-1

), 

viscosity and thermal conductivity of the fluid vary inversely as a linear function of 

temperature, the governing boundary layer equations admit a local similarity solutions. The 

resulting ordinary differential equations have been solved by using Runge-Kutta shooting 

method with guessed initial conditions. Particular cases of the present results have been 

compared with those of [11]. 

2.    Mathematical Formulation of the Problem: 

 Consider the unsteady laminar incompressible viscous electrically conducting fluid flow 

at the stagnation point of a two-dimensional and axi-symmetric body. A magnetic field H0 is 

imposed parallel to the surface (i.e. along the x-axis) outside the boundary layer. We assumed 

that both viscous and magnetic Reynolds numbers are sufficiently large for momentum and 

magnetic boundary layers have to be developed. The effects of the induced magnetic field, 

viscous dissipation and Joule heating have been included in the analysis. However, the Hall 

effect is neglected. It is assumed that there is no applied voltage, which implies the absence of 

the electric field (i.e. E = 0). The electrical currents flowing in the fluid give rise to an 

induced magnetic field which would exist if the fluid were an electrically insulator. Here it is 

assumed that the normal component of the induced magnetic field H2 vanishes at the wall and 

the parallel component H1 is approaches its given value H0 [20].  The unsteadiness of the 

flow, temperature and magnetic fields is caused by the time dependent free stream velocity, 

applied magnetic field and wall temperature (heat flux). The surface is assumed to have either 

prescribed temperature or it is subjected to prescribed heat flux distribution. The x-axis is 

considered along the surface and y-axis is perpendicular to the plate, u and v are the viscosity 

components along the increasing direction of x and y-axis respectively. We assumed 

Temperature Tw is wall temperature and T∞  is the temperature of the fluid in the free stream 

which is assumed to be constant. The fluid property variations with temperature are limited to 

(i) viscosity (ii) thermal conductivity and (iii) density variation. The influence of variation of 

density with temperature is restricted to the body force term only with accordance with the 

Boussinesq’s approximation. Under the forgoing assumptions, the boundary layer equations 

governing the unsteady mixed convection flow under Boussinesq’s approximations in the 

neighbourhood of the stagnation point of a two dimensional and an axi-symmetric body can 

be expressed as [11]. 







x
x u

y
x vk k( ) ( )  0                      (1) 

- 46 -



0)()( 21  Hx
y

Hx
x

kk








                     (2) 






















































 










y

H
H

x

H
H

y

u

yx

p

y

u
v

x

u
u

t

u 2
2

1
1

1

0

11
)(   

   )(  TTg                      (3) 

2

1

2

121

111

y

H

y

u
H

x

u
H

y

H
v

x

H
u

t

H





























                    (4) 

2

11

2

1)( 























































 


x

H

y

u

y

T
K

y
c

y

T
v

x

T
u

t

T
p                   (5) 

The initial and boundary conditions are given by 

u(x, y, 0)=ui(x, y), v(x, y, 0)=vi(x, y), H(x, y, 0)=Hi(x, y),                  (6) 

H2(x, y, 0)=H2i(x, y), T(x, y, 0)=Ti(x, y),  

u(x, 0, t)=0, v(x, 0 ,t) =0, ,0)],0,([ 1 



txH

y
H2(x, 0, t)=0, T(x, 0, t)=Tw,           (7) 

u(x, , t)= ue, H1(x, , t)=H0, T(x, , t)=T . 

 In the above equations ∞  is the free stream  density,    the viscosity, g the gravitational 

acceleration, T  is the  temperature  inside the boundary layer,  the volumetric coefficient of thermal 

expansion, p the static pressure, cp the specific heat at constant pressure, K the thermal conductivity, 

α1 the dimensional parameter associated with the magnetic  Prandtl number, Pr the Prandtl  number, 

σ the electrical conductivity, μ0 the magnetic permeability, ue the velocity  the velocity at the edge of 

the boundary layer. 

 In order to reduce the set of partial differential equations (1 - 5) to a set of ordinary 

differential equations, let us apply the following transformations   
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1/K = B(T – Tr),  A =  / ,  Te = T -1/, B =  / K,  Tr = T - 1/. 

For prescribed wall temperature, the dimensionless temperature G is defined as  

T – T = (Tw – T )G, Tw – T = (Tw0 – T)(1 – t*)
-2

.              (8e) 

For prescribed heat flux,  G  is defined as 
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where,  t*  the  dimensionless time, a, b the gradients of free stream velocity and applied 

magnetic field respectively when  t* = 0, λ  the dimensionless parameter measures the 

unsteadiness in the free stream velocity, φ the dimensional function,  the dimensional 

stream function, us the velocity at steady state, f the dimensionless stream function, fʹ the 
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dimensionless velocity,  s  the dimensionless induced magnetic field in y-direction, sʹ the 

dimensionless induced magnetic field in x-direction, G the dimensionless temperature. A, Te, 

Tr are constants and their values depend on the reference state and the thermal properties of 

the fluid, i.e.  and  ,  the reciprocal of magnetic Prandtl number. 

 Using above transformations, we find that equations (1) and (2) are satisfied identically 

and equations (3 – 5) reduce to  
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The boundary conditions become: 

at   = 0; f(0) = f(0) = s(0) = s(0),  G(0) = 1 for (PWT), 

        G(0) = -1 for (PHF),             (12) 

at    ; f() = 1,  s() = 1, G() = 0. 

where, prime denote partial differentiation with respect to the variable    and the 

dimensionless parameters are defined as 

 Pr = cp / K (Prandtl number),  Rex = usx /  (Local Reynolds number) 

  = (0b2 / a2) (Magnetic number). 

In case of PWT, 

 Ec = us
2
 / [cp(Tw0 - T)] (Eckert number) and 

      
23

0 /)(   xTTgGr wx  (Local Grashof number). 

In case of PHF, 
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 (Temperature buoyancy parameter). 
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 (Thermal conductivity parameter). 

 Equations (9 – 11), with boundary conditions (12) described the unsteady mixed 

convective flow of an electrically conducting fluid at the stagnation of a two dimensional 

body (k = 0) and an axi-symmetric body (k = 1) in the presence of an applied magnetic field, 

with temperature dependent viscosity and thermal conductivity. 

 The skin friction and heat transfer co-efficient can be expressed in the form 
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For prescribed heat flux, the heat transfer co-efficient Nu is given by 
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3.     Numerical Results and Discussion: 

 The problem under consideration is obtained by the system of equations (9 –11) and 

the boundary conditions (12) and constitutes a boundary value problem of ordinary 

differential equations solved by numerically using the Runge-Kutta Shooting method for 

different values of the parameters. To verify the proper treatment of the problem the situation 

have been compared with those of the corresponding constant viscosity and thermal 

conductivity cases by setting  = 0 and =0. Thus Kumeri et al [11] have obtained fw(0) = 

3.670528 and Gw(0) = 2.555908 when k = 1, and Ec = 0.05 for prescribed heat  flux and 

fw(0) = 1.880254 and Gw(0) = 0.342159 for prescribed wall temperature. Our results for 

fw(0) and Gw(0) for  = 0, =0  are 3.663157 and 2.540160 respectively for prescribed heat 

flux and 1.883360 and 0.342996 respectively for prescribed wall temperature. Therefore our 

results are in very good agreement with those of [11]. We have compared our results for skin 

friction factor fw(0), the value of sw(0) = and heat transfer factor Gw(0) for prescribed heat 

flux and Gw(0) for prescribed wall temperature for constant properties with those of [11]. 

The results are found to be in excellent agreement. The comparison is given in Table-1 and 

Table-2 respectively. 

Table - 1 Comparison of skin friction fw, heat transfer Gw and missing values of sw for 

linear heat flux and for =0.5, =-0.5, 1=5, =10, Pr=0.7 and Ge=Gr=5000. 

 

 Present Calculation  M. Kumeri[11 ] 

K Ec fw sw Gw fw sw Gw 

1 0 3.403258 0.320223 2.356546 3.413083 0.320081 2.356948 

1 0.01 3.452033 0.321817 2.390418 3.460554 0.321640 2.391053 

1 0.05 3.663157 0.328432 2.540160 3.670528 0.327402 2.555408 

1 0.1 3.970824 0.322410 2.782407 3.962166 0.322875 2.777799 

0 0 6.342400 0.497871 2.416501 6.343077 0.497850 2.415956 

0 0.01 6.527592 0.501475 2.509657 6.528326 0.501453 2.509075 

0 0.05 7.382945 0.517064 2.954760 7.383960 0.517038 2.553960 

0 0.1 8.807564 0.540010 3.744694 8.809138 0.539973 3.743490 

 

Table -2. Comparison of skin friction fw, heat transfer Gw and missing values of sw for 

prescribe wall temperature and for =0.5, =-0.5, 1=5, =10, Pr=0.7 and Ge=Gr=5000. 

 

 Present Calculation  M. Kumeri[11 ] 

K Ec fw sw Gw fw Sw Gw 

1 0 1.502985 0.252749 -0.212176 1.512356 0.255911 -0.225760 

1 0.01 1.575239 0.259934 -0.131928 1.572358 0.258752 -0.131729 

1 0.05 1.863360 0.282101 0.342996 1.880254 0.281230 0.342159 

1 0.1 2.307485 0.317017 1.208611 2.315472 0.316226 1.191167 

0 0 3.523751 0.378996 -0.209259 3.524127 0.378997 -0.209292 

0 0.01 3.672190 0.384960 0.072703 3.672576 0.384961 0.072705 

0 0.05 4.586000 0.492248 2.012264 4.586422 0.492256 2.012499 

0 0.1 5.911982 0.538911 5.912125 5.912353 0.538911 5.912680 
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 Tables 3 – 6 contain the numerical results for the friction factor, missing values of sw(0) 

and Nusselt number for Pr = .7, Ec =.1,  = -.5, 1 = 5, k = 0 (for two dimensional flow), k=1 

(for axi-symmetric flow) and for various values of Ge and Gr  for the case of prescribed wall 

temperature and for prescribed heat flux. From Table-3, it is observed that when k=0, fw(0) 

decreases and when k=1, fw(0) increases for increasing values of the thermal conductivity 

parameter Gr. Also, for both k=0, k=1, sw(0) decreases as Gr increases. Where as for 

increasing values of Gr, Gw(0) increases. It is observed from the Table- 4, that fw(0) 

increases for both k=0, 1, for increasing values of the viscosity parameter Ge and Gw(0) 

decreased for both k=0, 1. But for two-dimensional flows (k=0) the values of s(0) increases 

where as for axi-symmetric flows (k=1) the values of  sw(0) decreases for in creasing values 

of Ge. 

Table -3. Numerical results for the friction factor fw, missing values of sw, Nusselt number 

Gw for Pr=0.7, Ec=0.1, =-0.5, 1=5, =1, Ge= -5, =10, k=0,1 and various values 

of Gr. (For prescribe wall temperature) 

  k=0   k=1  

Gr fw sw Gw fw sw Gw 

-10 3.830364 0.397503 0.171150 1.032684 0.195807 0.312630 

-4 3.810523 0.395444 0.203884 0.078997 0.194314 0.386285 

-1 3.740696 0.386582 0.413981 1.356235 0.190208 0.802948 

-0.8 3.726379 0.384460 0.487638 1.451723 0.189619 0.951976 

-0.4 3.689132 0.376950 0.871990 1.844415 0.189070 1.674214 

-0.2 3.592809 0.368939 1.687395 2.454312 0.189002 3.105249 

2 3.955188 0.389634 0.021230 2.678563 0.212356 0.165254 

4 3.900473 0.405594 0.079489 2.752567 0.3156782 0.213564 

10 3.867368 0.401927 0.114751 2.952653 0.354561 0.265785 

Table -4. Numerical results for the friction factor fw, missing values of sw, Nusselt number 

Gw for Pr=0.7, Ec=0.1, =-0.5, 1=5, =1, Gr= -5, =10, k=0,1 and various values of 

Ge. (For prescribe wall temperature). 

  k=0   k=1  

Ge fw sw Gw fw sw Gw 

-10 3.621745 0.383624 0.200748 0.910345 0.207921 0.283216 

-6 3.744232 0.384625 0.189282 0.944157 0.207845 0.281244 

-2 4.316871 0.388413 0.142475 1.107791 0.207811 .0274652 

-1 5.080724 0.392245 0.092836 1.338052 0.207615 0.270245 

-0.8 5.430846 0.393628 0.073691 1.446874 0207505 0.269147 

-0.4 6.966279 0.398145 0.006846 1.939248 0.207122 0.267362 

2 2.341041 0.367684 0.380834 0.295671 0.204394 0.425673 

4 3.097632 0.378632 0.257941 0.865412 .204286 0.267512 

10 3.234315 0.350176 0.241573 0.925146 0.204215 0.254122 

 

 From Table - 5, it is observed that for k=0 and k=1, fw(0) increases with increasing 

values of Ge and sw(0) and Gw(0) decreases for increasing values of Ge. Table- 6 shows that 

for k=0 and k=1, fw(0), sw(0)  and Gw(0) decreases as Gr increases. 

Table - 5. Numerical results for the friction factor fw, missing values of sw, Nusselt number 

Gw for Pr=0.7, Ec=0.1, =-0.5, 1=5, =1, Gr= -5, =10, k=0,1 and various values of 

Ge. (For prescribe heat flux). 

  k=0   k=1  

Ge fw sw Gw fw sw Gw 
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-10 9.619937 0.533384 3.547195 4.184410 0.249054 3.154327 

-6 10.178452 0.533184 3.438076 4.538663 0.247607 3.104961 

-2 11.919580 0.531962 2.907609 6.075367 0.241773 2.976681 

-1 14.063255 0.430618 2.642103 7.969466 0.236921 2.894881 

-0.8 15.286194 0.412989 2.600216 8.285649 0.224568 2.715476 

-0.4 19.025487 0.385478 2.541237 10.548712 0.194578 2.354127 

Table -6. Numerical results for the friction factor fw, missing values of sw, Nusselt number 

Gw for Pr=0.7, Ec=0.1, =-0.5, 1=5, =1, Ge= -5, =10, k=0,1 and various values of 

Gr. (For prescribe heat flux). 

  k=0   k=1  

Gr fw sw Gw fw sw Gw 

-10 10.672382 0.541733 3.342084 4.459164 0.294910 2.882217 

-6 10.493620 0.535549 3.323980 4.340650 0.287548 2.837981 

-2 9.916869 0.420526 3.311375 4.009927 0.273423 2.845127 

-1 10.259451 0.410250 3.617110 4.078463 0.260021 3.036928 

-0.8 10.590988 0.407112 3.823042 3.638283 0.306451 2.813501 

-0.4 14.081979 0.390316 5.555467 4.082100 0.297064 3.346185 

 For prescribed wall temperature case (Tw>T0) the velocity and temperature profiles (f,G) 

showing the effects of viscosity parameter Ge and the thermal conductivity parameter Gr are 

given in Figures 1 – 4. From Figures 1- 2, it is observed that the velocity increases with the 

dimensionless distance  from the flat surface, takes its maximum values inside the boundary 

layer before decreasing asymptotically to its free stream value. This classical mixed 

convection profile is more evident for higher values of the viscosity parameter Ge. From 

Figure 2 it is also observed that (for gases Ge>0), for the values of Ge=+10, when the 

viscosity parameter variation is virtually negligible, we observed mixed convection profiles, 

typical of such standard convection flows, where as decreasing the values of Ge = 2 (i.e. 

increasing Tw-T), effectively increasing the viscosity within the boundary layer, consistently 

reduces the velocity within the boundary layer. The variation of dimensionless temperature 

profiles G() are also presented in Figures 1 – 2 for Ge. From Figures 1 - 2 we conclude that 

the fluid temperature within the thermal boundary layer decreases as the viscosity parameter 

Ge increases. It is also observed that an increase in the values of Ge means a decrease in the 

temperature difference T =Tw-T. 

  
   Figure 1     Figure 2 

Velocity and temperature profiles with variation of Ge for Gr= -5 (figure 1) and Gr= 2 (figure 

2) and for different values of the parameters Pr=.7, λ=-.5, λ1=5, k=0,Ec=.1, α=10 and β=1. 

 It is observed from the Figures 3 - 4 that the velocity decreases with the dimensionless 

distance  from the flat surface with increasing values of the thermal conductivity parameter 

 f ’   f ’  

 G 
  

 G  
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Gr. Also the temperature within the thermal boundary layer first increases up to a certain 

point (say =0.6 approximately) and then decreases as the thermal conductivity parameter Gr 

increases, which is observed from the Figures 3 - 4. 

  
   Figure 3     Figure 4 

Velocity and temperature profiles with variation of Gr (figure 3-4) and for different values of 

the parameters Ge= -5, Pr=.7, Ec=.1, λ=-.5, λ1=5, k=0, α=10 and β=1. 

 For prescribed wall temperature the effect of the Prandtl number Pr on the velocity and 

temperature profiles (f, G) for  = -0.5 (decelerating case), Ec =0, and different values of Ge 

and Gr are shown in Figures 5 – 6. Both velocity and thermal boundary layer thickness reduce 

as Pr increases. For Pr = 7, the temperature near the wall becomes more than the temperature 

at the wall. This implies that the hot wall will no longer be cooled and heat will be transferred 

from the fluid in the wall. It is observed that for Pr=7(water), there is no overshoot in the 

velocity profile. A high Prandtl number implies a more viscous fluid which retards the 

motion and thus suppress the overshoot in the velocity profile. It is also observed that the 

increasing values of Ge and Gr together with the increasing values of Pr, the velocity and 

thermal boundary layer thickness decreases. 

  
   Figure 5     Figure 6 

Velocity and temperature profiles with variation of Pr for Ge=Gr= -5 (figure 5) and Ge=Gr= 

2 (figure 6) and for different values of the parameters, λ=-.5, λ1=5, k=0=Ec, α=10 and β=.5. 

4. Conclusion: 

 The results presented, demonstrate quite clearly that Ge and Gr, which are indicator of 

the variation of viscosity and thermal conductivity with temperature have a substantial effect 

on the drag and heat transfer characteristics as well as the velocity and temperature 

distributions within the boundary layer. Also the results indicate that the skin friction and heat 

transfer co-efficient and the induced magnetic field on the surface increase with buoyancy 

parameter which assists the forced flow. The buoyancy parameter causes overshoot in the 

velocity profile and it is further enhanced by the viscous dissipation. 
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