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Abstract: An alternative option pricing model is proposed, in which the asset prices follow the jump-
diffusion with stochastic volatility and intensity. The stochastic volatility follows the jump-diffusion.

We find a formulation for the European-style option in terms of characteristic functions.
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1. Introduction

In 1973, Fischer Black and Myron Scholes introduced, a theoretical valuation formula for options is
derived. In 1993, Heston studied a new technique to derive a closed — form solution for the price of a
European call option on an asset with stochastic volatility. The Heston model assumes that S, , the price

of the asset, is determined by a stochastic process:

dS, = uS,dt +Jv, S,dW° (1)
where ££>0, v, the instantaneous variance is a CIR process:
dv, =, (6, —v,)dt + o\ Jv, AW’ )

and x,>0,60,>0,0>0, WtS ,th are Brownian motion with correlation p .

In 1996, Bates introduced an efficient method is developed for pricing American options on
stochastic volatility /jump-diffusion processes under systematic jump and volatility risk. The exchange
rate S, satisfy the following process:

dS, = 4S,dt +/v, S,dW,* +kdN, (3)
dv, =, (6, —v,)dt + o\ Jv, AW’
where k is the random percentage jump conditional on a jump occurring and N, is a Poisson process with

constant intensity A .
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2. Model Descriptions
The propose model assumes that the underlying asset has the following dynamics under risk-

neutral measure,

% = (r = Am)dt + /v, dW* +Y,dN,

t
dv, =&, (6, —v,)dt + o[V, dW,*
d4, =&, (6, — A4)dt + &V, dW,* 4)
where S,, V,, k,, 6,, o, Y,, N, Wts and W," are define (1), (2) and (3). I is the risk-
free rate , M is the expected of Y, K, is a mean-reverting rate. We assume that jump process N, are

independent of W,®, W." and W,*. A standard Brownian motion W,*,W,* and W," are independent.

3. Characteristic Functions
Denote the characteristic function as
f(l,v, 4,t;X) = E[e"7 | X, =1,v, =V] (5)
where T >t and i =+/~1. Then, the following theorem holds.
Theorem 3.1 Suppose that S, follows the dynamics in (4). Then the characteristic function for X;

defined in (5) is given by

f(l,v, A,t;X) =exp(ixl +ixrz + A(z) + B(r)v+C(7) 1),

—%rlr %rzr —%Chf %Qﬂ
2x,0, e S e ~2x,0, = (> N,

where A(7) =— oilz Y In ol 2 > ’
_pHr WAAES
B(T):(UZ_U)EL—HTJ’ C(T)ZZF[L_ET} U = ix
rn+re g, +0,€

n=(,—-pou)+H, r,=—(x,—pou)+H, H=\/(KV—pO'U)2—02(U2—U)
G, =k,+E, q,=—k, +E, E=yk?-25°F , F:—mu+_[(e”y—1)¢Y(y)dy

and @, (Y) is a density of random jump size Y,.

Proof Feynman-Kac formula gives the following PDE for the characteristic function

(r —%v—/lm) f, +%vfII +x,(60,-V)f, +%azvfw +povf, +x,(0,-V) T,

+%gzﬂfM+/lT [f(+y,v,4,t0)— T(,v,4,1,9)]4 (Y)dy+ f, =0, (6)
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f(,v,A,T;x)=e".

Consider form for the characteristic function:
f(l,v, A,t;X) =exp(ixl +ixrz + A(z) + B(r)v+C(7)4)

where 7=T —t and A(z=0)=B(r=0)=C(r =0).

We plan to substitute equation (7) into equation (6). Firstly, we compute

f=ixt, f, =—x’f, f,=B(?)f, f,=B*(7)f, f, =ixB(z)f, f,=C(2)f ,

f,=C*(@)f, fi=(-xr-A-Bv-CA)f.
fl+y,v, At —f(v,,tx)=e™f .

Substitute all terms above in equation (6),

(r —%v—/lm)ixf +%v(—x2 f)+x,(0,-V)B(z) f +%02v82(r) f + povixB(r) f
11,6, — 2)C(2) f +%822C2(T)f +4F [ €4, (y)dy—(ixr + A +By+C)f =0.

Let IX =U, then

(r —%v—lm)u +%vu2 +x,(60, —V)B(7) +%O‘2VBZ(Z‘) + povuB(7)
+x,(0, - A)C(r) +%gz,1c2(f) +,1j e (y)dy—ru—A —Bv-C.A1=0.

We have
A +Bv+C A=x,0,B(r)+x,0,C(r)
+[%u2 —%u -k,B(7) +%O'ZBZ(T) + pauB(r)jv

+[%52c2 ()= x,C(z)—mu + j (& 1), (y)dy])t .
This leads to the following system :
A =x,0,B(r) +x,0,C(7)

B, = —%(u —u?)—(x, — pou)B(z) +%O‘282(T)
C. =%82c2(f)—,<lc<f)—mu ; T (€ ~D)d, (y)dy .

In the equation (9) become a Ricatti equation. Let

G'(r)
G;G(T)

B(r)=-

substitute B(7) in equation (9),
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1
oy =G @)
{ 66" ()~ % (G (2) };}%(u—umm—pau) 202
G*(r) 7Gz(r) 7GZ(T)
Then
T GOCE L2 1y — pouy- SO g,
26 7@@)

2
Multiply by % G(z),

G"(2) + (x, — pou)G'(z) +%2 (U2 —U)G(r) =0.

General solution is

~(i5,~ pou)—(x,— pouy?—o? (v ~u) L ~(i5,~ pou) (i, ~pou)’ —o? (P -u) .
G(r)=Ce 2 +C,e 2

S Zor
=Ce? +Cue

where
n=(x,—pou)+H, H= \/(K'V — pou)’ —o?(u*—u)
r,=—(x, —pou)+H.
Note that I, + 1, = 2H, =—c’(u*—-u).
The boundary condition
G@0)=C +C2
G(O)_ rC +;rC2=O.
We have Clzm and C, =m.
2H
Thus
1 1
. _lrl rzG(O)e 517+1r2 rlG(O)eazf
B(r)=——2) _ 2" 2H 26 % 24
2 1
iG(T) [I‘ G(O) 17 rlG(O) e§1f]
2H
i L lr
_ 1 |rre? —rre?
o2

—Shr Sht
2 2
r,e +re

1 1
et 14 Zht
1|-c®(u®-u)e 2" +o?(u?-u)e?’
2 1 1
-Znr Zhr
re? +re?
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, _
=(U°-u) T T
—Erlr Erzr
re?2 +re

1-e™
n+re
Next, consider in equation (10).

CTZ%fC%ﬂ—KJXﬂ—mu+T@W—D@(W@L

Let
M'(z)
> .

M)

C(r)=-

Similarly in B(7), we have

. .
M (T) — qZM (O) e 2Q1 + qlM (O) ezq
2E 2L

where E = /x? - 2¢°F | F :—mu+I(e”y—1)¢Y(y)dy, g,=x,+E, q,=—x,+E.

Thus
1 1
_lql q,M (0) e_EoﬂT +1q2 oM (0) eiqzr
C(r) = 2 . 2E ‘ 2 ZE1
_i[sz (0) efiqlr n q.M (0) eaqzr]
2 2E 2E

lq lq
——Qy7 —Q,7
— qque g _Q1q2e2

1 1
—Zqr g,
gz(qze A +q1e2 2 )

:béefF{—Effl}
&

g, +0,e
0, -Er
=2l{—1 $ E}
g, +0,e

A =k,0,B(r)+x,0,C(7).

Consider in equation (8),

Integrating with respect to7 ,

A7) = Kvevj B(s)ds+ KﬁJC(S)ds

__260,7C) o 200, [MS) o
o’ 1 G(s) g® 3 M(s)
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= 25O, -
O

2

2x,0 .
;2 £INM(s) |
2x,0,, G(r) 2x,60,, M(7)
=——=>"1In ——5=In
o GO) ¢ M (0)

=Tz 2HG(0)  2HG(0) e 2EM (0) 2EM (0)

—Erlr 1rzr L h? : 2T
_2x6, |G " 1G(O0er” | 2x,0, | 4,M(O)e 2" L GM (0)e?"

*lrl‘l' 1I'Z‘Z' 71q11~ quT
2k,0, Inl 28 2 4e? | 2x,6, In| 928 2 +qe?
o’ 2H & 2E

A(r)=—

The proof is now completed.

4. A Formula for European Option Pricing
Following Carr and Madan (1999) , the modified call price C; (K) is defined by

¢ (k) =e*C. (k) for some constant & >0

where C; (k) = j e (e —€e*)g, (s)ds is the value of a T maturity call option with strike price €
k

(k=InK), and G, (S) be the risk-neutral density of the log asset price S; =InS;. As C; (K) is not

square integrable over (—o0,00), the introduction of a damping factor e aims at removing this problem.

Theorems 3.2 The Fourier transform of C; (k) exist:
v (&)= [ €%, (k) dk

Proof

0 () =] e[ e (e ~€")g (s)dsck
(a+1+i&)s (a+1+i&)s

:J‘j;e—rT o (S)J._Sw(e a+ié —e a+l+i& )dS

_e (v, At x=¢ —(a +D)i) (11)
P+ a-E+iRa+)E

where f is the characteristic function defined in theorem 3.1

A sufficient condition for C; to be square-intefrable is given by ¥ (0) being finite. This is equivalent to

E(S¢™) <o,
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Call prices can then be numerically obtained by using the inverse transform:

o0

L AGLE
T

C, (k)=

00

—ak ©

ey (©)de (12

Vd
More precisely, the call price is determined by substituting (11) into (12) and performing the required

integration. Integration (12) is a direct Fourier transform and lends itself to an application of the FFT.
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