Jump-Diffusion with Stochastic Volatility and Intensity

Montakan thongpan, Sarun Wongwai and Nonthiya Makate
School of Mathematics, Faculty of Science and Technology
Rajamangala University of Technology Thanyaburi, Thailand
E- mail: toombong@hotmail.com,wsarun@hotmail.com,nonthiyam@hotmail.com

Abstract

An alternative option pricing model is proposed, in which the asset prices follow the jumpdiffusion with stochastic volatility and intensity. The stochastic volatility follows the jump-diffusion. We find a formulation for the European-style option in terms of characteristic functions.

Keywords: Jump-diffusion model, Stochastic Volatility, Intensity, Characteristic functions.

1. Introduction

In 1973, Fischer Black and Myron Scholes introduced, a theoretical valuation formula for options is derived. In 1993, Heston studied a new technique to derive a closed - form solution for the price of a European call option on an asset with stochastic volatility. The Heston model assumes that S_{t}, the price of the asset, is determined by a stochastic process:

$$
\begin{equation*}
d S_{t}=\mu S_{t} d t+\sqrt{v_{t}} S_{t} d W_{t}^{s} \tag{1}
\end{equation*}
$$

where $\mu>0, v_{t}$ the instantaneous variance is a CIR process:

$$
\begin{equation*}
d v_{t}=\kappa_{v}\left(\theta_{v}-v_{t}\right) d t+\sigma \sqrt{v_{t}} d W_{t}^{v} \tag{2}
\end{equation*}
$$

and $\kappa_{v}>0, \theta_{v}>0, \sigma>0, W_{t}^{S}, W_{t}^{v}$ are Brownian motion with correlation ρ.
In 1996, Bates introduced an efficient method is developed for pricing American options on stochastic volatility /jump-diffusion processes under systematic jump and volatility risk. The exchange rate S_{t} satisfy the following process:

$$
\begin{align*}
& d S_{t}=\mu S_{t} d t+\sqrt{v_{t}} S_{t} d W_{t}^{S}+k d N_{t} \tag{3}\\
& d v_{t}=\kappa_{v}\left(\theta_{v}-v_{t}\right) d t+\sigma \sqrt{v_{t}} d W_{t}^{v}
\end{align*}
$$

where k is the random percentage jump conditional on a jump occurring and N_{t} is a Poisson process with constant intensity λ.

2. Model Descriptions

The propose model assumes that the underlying asset has the following dynamics under riskneutral measure,

$$
\begin{align*}
\frac{d S_{t}}{S_{t}} & =\left(r-\lambda_{t} m\right) d t+\sqrt{v_{t}} d W_{t}^{S}+Y_{t} d N_{t} \\
d v_{t} & =\kappa_{v}\left(\theta_{v}-v_{t}\right) d t+\sigma \sqrt{v_{t}} d W_{t}^{v} \\
d \lambda_{t} & =\kappa_{\lambda}\left(\theta_{\lambda}-\lambda_{t}\right) d t+\varepsilon \sqrt{v_{t}} d W_{t}^{\lambda} \tag{4}
\end{align*}
$$

where $S_{t}, v_{t}, \kappa_{v}, \theta_{v}, \sigma, Y_{t}, N_{t}, W_{t}^{S}$ and W_{t}^{v} are define (1), (2) and (3). r is the riskfree rate, m is the expected of Y_{t}, κ_{λ} is a mean-reverting rate. We assume that jump process N_{t} are independent of W_{t}^{S}, W_{t}^{v} and W_{t}^{λ}. A standard Brownian motion $W_{t}^{\lambda}, W_{t}^{S}$ and W_{t}^{v} are independent.

3. Characteristic Functions

Denote the characteristic function as

$$
\begin{equation*}
f(l, v, \lambda, t ; x)=E\left[e^{i x X_{T}} \mid X_{t}=l, v_{t}=v\right] \tag{5}
\end{equation*}
$$

where $T \geq t$ and $i=\sqrt{-1}$. Then, the following theorem holds.
Theorem 3.1 Suppose that S_{t} follows the dynamics in (4). Then the characteristic function for X_{T} defined in (5) is given by

$$
f(l, v, \lambda, t ; x)=\exp (i x l+i x r \tau+A(\tau)+B(\tau) \nu+C(\tau) \lambda)
$$

where $A(\tau)=-\frac{2 \kappa_{v} \theta_{v}}{\sigma^{2}} \ln \left[\frac{r_{2} e^{-\frac{1}{2} r_{1} \tau}+r_{1} e^{\frac{1}{2} r_{2} \tau}}{2 H}\right]-\frac{2 \kappa_{\lambda} \theta_{\lambda}}{\varepsilon^{2}} \ln \left[\frac{q_{2} e^{-\frac{1}{2} q_{1} \tau}+q_{1} e^{\frac{1}{2} q_{2} \tau}}{2 E}\right]$,

$$
B(\tau)=\left(u^{2}-u\right)\left(\frac{1-e^{-H \tau}}{r_{1}+r_{2} e^{-H \tau}}\right), \quad C(\tau)=2 F\left[\frac{1-e^{-E \tau}}{q_{1}+q_{2} e^{-E \tau}}\right], u=i x
$$

$$
r_{1}=\left(\kappa_{v}-\rho \sigma u\right)+H, \quad r_{2}=-\left(\kappa_{v}-\rho \sigma u\right)+H, \quad H=\sqrt{\left(\kappa_{v}-\rho \sigma u\right)^{2}-\sigma^{2}\left(u^{2}-u\right)}
$$

$$
q_{1}=\kappa_{\lambda}+E, \quad q_{2}=-\kappa_{\lambda}+E, \quad E=\sqrt{\kappa_{\lambda}^{2}-2 \varepsilon^{2} F}, \quad F=-m u+\int_{-\infty}^{\infty}\left(e^{u y}-1\right) \phi_{Y}(y) d y
$$ and $\phi_{Y}(y)$ is a density of random jump size Y_{t}.

Proof Feynman-Kac formula gives the following PDE for the characteristic function

$$
\begin{align*}
& \left(r-\frac{1}{2} v-\lambda m\right) f_{l}+\frac{1}{2} v f_{l l}+\kappa_{v}\left(\theta_{v}-v\right) f_{v}+\frac{1}{2} \sigma^{2} v f_{v v}+\rho \sigma v f_{l v}+\kappa_{\lambda}\left(\theta_{\lambda}-v\right) f_{\lambda} \\
& + \tag{6}\\
& \frac{1}{2} \varepsilon^{2} \lambda f_{\lambda \lambda}+\lambda \int_{-\infty}^{\infty}[f(l+y, v, \lambda, t ; \phi)-f(l, v, \lambda, t ; \phi)] \phi_{Y}(y) d y+f_{t}=0,
\end{align*}
$$

$f(l, v, \lambda, T ; x)=e^{i x l}$.
Consider form for the characteristic function:

$$
\begin{equation*}
f(l, v, \lambda, t ; x)=\exp (i x l+i x r \tau+A(\tau)+B(\tau) v+C(\tau) \lambda) \tag{7}
\end{equation*}
$$

where $\tau=T-t$ and $A(\tau=0)=B(\tau=0)=C(\tau=0)$.
We plan to substitute equation (7) into equation (6). Firstly, we compute

$$
\begin{aligned}
& f_{l}=i x f, f_{l l}=-x^{2} f, f_{v}=B(\tau) f, f_{v v}=B^{2}(\tau) f, f_{l v}=i x B(\tau) f, f_{\lambda}=C(\tau) f, \\
& f_{\lambda \lambda}=C^{2}(\tau) f, f_{t}=\left(-i x r-A_{\tau}-B_{\tau} v-C_{\tau} \lambda\right) f, \\
& f(l+y, v, \lambda, t ; x)-f(l, v, \lambda, t ; x)=e^{i x y} f .
\end{aligned}
$$

Substitute all terms above in equation (6),

$$
\begin{aligned}
& \left(r-\frac{1}{2} v-\lambda m\right) i x f+\frac{1}{2} v\left(-x^{2} f\right)+\kappa_{v}\left(\theta_{v}-v\right) B(\tau) f+\frac{1}{2} \sigma^{2} v B^{2}(\tau) f+\rho \sigma v i x B(\tau) f \\
& +\kappa_{\lambda}\left(\theta_{\lambda}-\lambda\right) C(\tau) f+\frac{1}{2} \varepsilon^{2} \lambda C^{2}(\tau) f+\lambda f \int_{-\infty}^{\infty} e^{i x y} \phi_{\gamma}(y) d y-\left(i x r+A_{\tau}+B_{\tau} v+C_{\tau} \lambda\right) f=0 .
\end{aligned}
$$

Let $i x=u$, then

$$
\begin{aligned}
& \left(r-\frac{1}{2} v-\lambda m\right) u+\frac{1}{2} v u^{2}+\kappa_{v}\left(\theta_{v}-v\right) B(\tau)+\frac{1}{2} \sigma^{2} v B^{2}(\tau)+\rho \sigma v u B(\tau) \\
& +\kappa_{\lambda}\left(\theta_{\lambda}-\lambda\right) C(\tau)+\frac{1}{2} \varepsilon^{2} \lambda C^{2}(\tau)+\lambda \int_{-\infty}^{\infty} e^{u y} \phi_{Y}(y) d y-r u-A_{\tau}-B_{\tau} v-C_{\tau} \lambda=0 .
\end{aligned}
$$

We have

$$
\begin{aligned}
A_{\tau}+B_{\tau} v+C_{\tau} \lambda & =\kappa_{v} \theta_{v} B(\tau)+\kappa_{\lambda} \theta_{\lambda} C(\tau) \\
& +\left(\frac{1}{2} u^{2}-\frac{1}{2} u-\kappa_{v} B(\tau)+\frac{1}{2} \sigma^{2} B^{2}(\tau)+\rho \sigma u B(\tau)\right) v \\
& +\left(\frac{1}{2} \varepsilon^{2} C^{2}(\tau)-\kappa_{\lambda} C(\tau)-m u+\int_{-\infty}^{\infty}\left(e^{u y}-1\right) \phi_{Y}(y) d y\right) \lambda .
\end{aligned}
$$

This leads to the following system :

$$
\begin{align*}
& A_{\tau}=\kappa_{v} \theta_{v} B(\tau)+\kappa_{\lambda} \theta_{\lambda} C(\tau) \tag{8}\\
& B_{\tau}=-\frac{1}{2}\left(u-u^{2}\right)-\left(\kappa_{v}-\rho \sigma u\right) B(\tau)+\frac{1}{2} \sigma^{2} B^{2}(\tau) \tag{9}\\
& C_{\tau}=\frac{1}{2} \varepsilon^{2} C^{2}(\tau)-\kappa_{\lambda} C(\tau)-m u+\int_{-\infty}^{\infty}\left(e^{u y}-1\right) \phi_{Y}(y) d y . \tag{10}
\end{align*}
$$

In the equation (9) become a Ricatti equation. Let

$$
B(\tau)=-\frac{G^{\prime}(\tau)}{\frac{\sigma^{2}}{2} G(\tau)},
$$

substitute $B(\tau)$ in equation (9),

$$
-\left[\frac{\sigma^{2}}{2} G(\tau) G^{\prime \prime}(\tau)-\frac{\sigma^{2}}{2}\left(G^{\prime}(\tau)\right)^{2}\right] \frac{1}{\frac{\sigma^{4}}{4} G^{2}(\tau)}=-\frac{1}{2}\left(u-u^{2}\right)+\left(\kappa_{v}-\rho \sigma u\right) \frac{G^{\prime}(\tau)}{\frac{\sigma^{2}}{2} G^{2}(\tau)}+\frac{\frac{1}{2} \sigma^{2}\left(G^{\prime}(\tau)\right)^{2}}{\frac{\sigma^{4}}{4} G^{2}(\tau)}
$$

Then

$$
\frac{\sigma^{2}}{2} \frac{G(\tau) G^{\prime \prime}(\tau)}{\frac{\sigma^{4}}{4} G^{2}(\tau)}+\frac{1}{2}\left(u^{2}-u\right)-\left(\kappa_{v}-\rho \sigma u\right) \frac{G^{\prime}(\tau)}{\frac{\sigma^{2}}{2} G(\tau)}=0 .
$$

Multiply by $\frac{\sigma^{2}}{2} G(\tau)$,

$$
G^{\prime \prime}(\tau)+\left(\kappa_{v}-\rho \sigma u\right) G^{\prime}(\tau)+\frac{\sigma^{2}}{4}\left(u^{2}-u\right) G(\tau)=0 .
$$

General solution is

$$
\begin{aligned}
G(\tau) & =C_{1} e^{\frac{-\left(\kappa_{v}-\rho \sigma u\right)-\sqrt{\left(\kappa_{v}-\rho \sigma u\right)^{2}-\sigma^{2}\left(u^{2}-u\right)}}{2} \tau}+C_{2} e^{\frac{-\left(\kappa_{v}-\rho \sigma u\right)+\sqrt{\left(\kappa_{v}-\rho \sigma u\right)^{2}-\sigma^{2}\left(u^{2}-u\right)}}{2} \tau} \\
& =C_{1} e^{\frac{-1}{2} r_{1} \tau}+C_{2} e^{\frac{1}{2} r_{2} \tau}
\end{aligned}
$$

where

$$
\begin{aligned}
& r_{1}=\left(\kappa_{v}-\rho \sigma u\right)+H, H=\sqrt{\left(\kappa_{v}-\rho \sigma u\right)^{2}-\sigma^{2}\left(u^{2}-u\right)} \\
& r_{2}=-\left(\kappa_{v}-\rho \sigma u\right)+H .
\end{aligned}
$$

Note that $r_{1}+r_{2}=2 H, r_{1} r_{2}=-\sigma^{2}\left(u^{2}-u\right)$.
The boundary condition

$$
\begin{aligned}
& G(0)=C_{1}+C_{2} \\
& G^{\prime}(0)=\frac{-1}{2} r_{1} C_{1}+\frac{1}{2} r_{2} C_{2}=0 .
\end{aligned}
$$

We have $C_{1}=\frac{r_{2} G(0)}{2 H}$ and $C_{2}=\frac{r_{1} G(0)}{2 H}$.
Thus

$$
\begin{aligned}
B(\tau) & =-\frac{G^{\prime}(\tau)}{\frac{\sigma^{2}}{2} G(\tau)}=\frac{-\frac{1}{2} r_{1} \frac{r_{2} G(0)}{2 H} e^{-\frac{1}{2} r_{1} \tau}+\frac{1}{2} r_{2} \frac{r_{1} G(0)}{2 H} e^{\frac{1}{2} r_{2} \tau}}{-\frac{\sigma^{2}}{2}\left[\frac{r_{2} G(0)}{2 H} e^{-\frac{1}{2} r_{1} \tau}+\frac{r_{1} G(0)}{2 H} e^{\frac{1}{2} r^{2} \tau}\right]} \\
& =\frac{1}{\sigma^{2}}\left[\frac{r_{1} r_{2} e^{-\frac{1}{2} r_{i} \tau}-r_{1} r_{2} e^{\frac{1}{2} r_{2} \tau}}{r_{2} e^{-\frac{1}{2} r^{\prime} \tau}+r_{1} e^{\frac{1}{2} r^{2} \tau}}\right] \\
& =\frac{1}{\sigma^{2}}\left[\frac{-\sigma^{2}\left(u^{2}-u\right) e^{-\frac{1}{2} r_{1} \tau}+\sigma^{2}\left(u^{2}-u\right) e^{\frac{1}{2} r_{2} \tau}}{r_{2} e^{-\frac{1}{2} r_{1} \tau}+r_{1} e^{\frac{1}{2} r^{2} \tau}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(u^{2}-u\right)\left[\frac{-e^{-\frac{1}{2} \eta_{1} \tau}+e^{\frac{1}{2} \eta^{2} \tau}}{r_{2} e^{-\frac{1}{2} r_{i} \tau}+r_{1} e^{\frac{1}{2} r_{2} \tau}}\right] \\
& =\left(u^{2}-u\right)\left(\frac{1-e^{-H \tau}}{r_{1}+r_{2} e^{-H \tau}}\right) .
\end{aligned}
$$

Next, consider in equation (10).

$$
C_{\tau}=\frac{1}{2} \varepsilon^{2} C^{2}(\tau)-\kappa_{\lambda} C(\tau)-m u+\int_{-\infty}^{\infty}\left(e^{u y}-1\right) \phi_{Y}(y) d y .
$$

Let

$$
C(\tau)=-\frac{M^{\prime}(\tau)}{\frac{\varepsilon^{2}}{2} M(\tau)}
$$

Similarly in $B(\tau)$, we have

$$
M(\tau)=\frac{q_{2} M(0)}{2 E} e^{-\frac{1}{2} q_{1} \tau}+\frac{q_{1} M(0)}{2 E} e^{\frac{1}{2} q_{2} \tau}
$$

where $E=\sqrt{\kappa_{\lambda}^{2}-2 \varepsilon^{2} F}, F=-m u+\int_{-\infty}^{\infty}\left(e^{u y}-1\right) \phi_{Y}(y) d y, q_{1}=\kappa_{\lambda}+E, q_{2}=-\kappa_{\lambda}+E$.

Thus

$$
\begin{aligned}
C(\tau) & \left.=\frac{-\frac{1}{2} q_{1} \frac{q_{2} M(0)}{2 E} e^{-\frac{1}{2} q_{1} \tau}+\frac{1}{2} q_{2} \frac{q_{1} M(0)}{2 E} e^{\frac{1}{2} q_{2} \tau}}{-\frac{\varepsilon^{2}}{2}\left[\frac{q_{2} M(0)}{2 E} e^{-\frac{1}{2} q_{1} \tau}\right.}+\frac{q_{1} M(0)}{2 E} e^{\frac{1}{2} q_{2} \tau}\right] \\
& =\frac{q_{1} q_{2} e^{-\frac{1}{2} q_{1} \tau}-q_{1} q_{2} e^{\frac{1}{2} q_{2} \tau}}{\varepsilon^{2}\left(q_{2} e^{-\frac{1}{2} q_{1} \tau}+q_{1} e^{\frac{1}{q_{2} \tau}}\right)} \\
& =\frac{1}{\varepsilon^{2}}\left(2 \varepsilon^{2} F\right)\left[\frac{1-e^{-E \tau}}{q_{1}+q_{2} e^{-E \tau}}\right] \\
& =2 F\left[\frac{\left.1-e^{-E \tau}\right]}{q_{1}+q_{2} e^{-E \tau}}\right] .
\end{aligned}
$$

Consider in equation (8),

$$
A_{\tau}=\kappa_{v} \theta_{v} B(\tau)+\kappa_{\lambda} \theta_{\lambda} C(\tau)
$$

Integrating with respect to τ,

$$
\begin{aligned}
A(\tau) & =\kappa_{v} \theta_{v} \int_{0}^{\tau} B(s) d s+\kappa_{\lambda} \theta_{\lambda} \int_{0}^{\tau} C(s) d s \\
& =-\frac{2 \kappa_{v} \theta_{v}}{\sigma^{2}} \int_{0}^{\tau} \frac{G^{\prime}(s)}{G(s)} d s-\frac{2 \kappa_{\lambda} \theta_{\lambda}}{\varepsilon^{2}} \int_{0}^{\tau} \frac{M^{\prime}(s)}{M(s)} d s
\end{aligned}
$$

$$
\begin{aligned}
& =-\left.\frac{2 \kappa_{v} \theta_{v}}{\sigma^{2}} \ln G(s)\right|_{s=0} ^{\tau}-\left.\frac{2 \kappa_{\lambda} \theta_{\lambda}}{\varepsilon^{2}} \ln M(s)\right|_{s=0} ^{\tau} \\
& =-\frac{2 \kappa_{v} \theta_{v}}{\sigma^{2}} \ln \frac{G(\tau)}{G(0)}-\frac{2 \kappa_{\lambda} \theta_{\lambda}}{\varepsilon^{2}} \ln \frac{M(\tau)}{M(0)} \\
& =-\frac{2 \kappa_{v} \theta_{v}}{\sigma^{2}} \ln \left[\frac{r_{2} G(0) e^{-\frac{1}{2} r_{i} \tau}}{2 H G(0)}+\frac{r_{1} G(0) e^{\frac{1}{2} r_{2} \tau}}{2 H G(0)}\right]-\frac{2 \kappa_{\lambda} \theta_{\lambda}}{\varepsilon^{2}} \ln \left[\frac{q_{2} M(0) e^{-\frac{1}{2} q_{1} \tau}}{2 E M(0)}+\frac{q_{1} M(0) e^{\frac{1}{q_{2} \tau}}}{2 E M(0)}\right] \\
& A(\tau)=-\frac{2 \kappa_{v} \theta_{v}}{\sigma^{2}} \ln \left[\frac{r_{2} e^{-\frac{1}{2} r_{1} \tau}}{2 H}+r_{1} e^{\frac{1}{r_{2} \tau}}\right. \\
& 2 H
\end{aligned}-\frac{2 \kappa_{\lambda} \theta_{\lambda}}{\varepsilon^{2}} \ln \left[\frac{q_{2} e^{-\frac{1}{2} q_{1} \tau}+q_{1} e^{\frac{1}{2} q_{2} \tau}}{2 E}\right] .
$$

The proof is now completed.

4. A Formula for European Option Pricing

Following Carr and Madan (1999), the modified call price $c_{T}(k)$ is defined by

$$
c_{T}(k)=e^{\alpha k} C_{T}(k) \quad \text { for some constant } \alpha>0
$$

where $C_{T}(k)=\int_{k}^{\infty} e^{-r T}\left(e^{s}-e^{k}\right) q_{T}(s) d s$ is the value of a T maturity call option with strike price e^{k} $(k=\ln K)$, and $q_{T}(s)$ be the risk-neutral density of the \log asset price $s_{T}=\ln S_{T}$. As $C_{T}(k)$ is not square integrable over $(-\infty, \infty)$, the introduction of a damping factor $e^{\alpha k}$ aims at removing this problem.

Theorems 3.2 The Fourier transform of $c_{T}(k)$ exist:

$$
\psi_{T}(\xi)=\int_{-\infty}^{\infty} e^{i \xi k} c_{T}(k) d k
$$

Proof

$$
\begin{align*}
\psi_{T}(\xi) & =\int_{-\infty}^{\infty} e^{i \xi k} \int_{k}^{\infty} e^{\alpha k} e^{-r_{T}}\left(e^{s}-e^{k}\right) q_{T}(s) d s d k \\
& =\int_{-\infty}^{\infty} e^{-r_{T}} q_{T}(s) \int_{-\infty}^{s}\left(e^{\frac{(\alpha+1+i \xi) s}{\alpha+i \xi \xi}}-e^{\frac{(\alpha+1+i \xi) s}{\alpha+1+i \xi \xi}}\right) d s \\
& =\frac{e^{-r T} f(l, v, \lambda, t ; x=\xi-(\alpha+1) i)}{\alpha^{2}+\alpha-\xi^{2}+i(2 \alpha+1) \xi}, \tag{11}
\end{align*}
$$

where f is the characteristic function defined in theorem 3.1

A sufficient condition for c_{T} to be square-intefrable is given by $\psi_{T}(0)$ being finite. This is equivalent to

$$
E\left(S_{T}^{\alpha+1}\right)<\infty
$$

Call prices can then be numerically obtained by using the inverse transform:

$$
\begin{align*}
C_{T}(k) & =\frac{e^{-\alpha k}}{2 \pi} \int_{-\infty}^{\infty} e^{-i \xi k} \psi_{T}(\xi) d \xi \\
& =\frac{e^{-\alpha k}}{\pi} \int_{0}^{\infty} e^{-i \xi k} \psi_{T}(\xi) d \xi \tag{12}
\end{align*}
$$

More precisely, the call price is determined by substituting (11) into (12) and performing the required integration. Integration (12) is a direct Fourier transform and lends itself to an application of the FFT.

References

[1] F., Black, M., Scholes, "The Pricing of Options and Corporate liabilities", Journal of Political Economy 81, (1973), 637-654.
[2] D., Bates, "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options", Review of Financial Studies (1996), 69-107.
[3] S.L.,Heston, "A Closed-Form Solution for Options with Stochastic Volatility with Application to Bond and Currency Options", The Review of Financial Studies 6 (2), (1993), 327-343.
[4] T. Mikosch, Elementary Stochastic Calaculus. (1998).
[5] P.Carr, D.Madan Option pricing and the Fast Fouries transform, Journal of Comptational Finance 4 (1999) 61-73.

