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Abstract:  An alternative option pricing model is proposed, in which the asset prices follow the jump-
diffusion with stochastic volatility and intensity. The stochastic volatility follows the jump-diffusion. 
We find a formulation for the European-style option in terms of characteristic functions. 
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1.  Introduction 

In 1973, Fischer Black and Myron Scholes introduced, a theoretical valuation formula for options is 
derived. In 1993, Heston studied a new technique to derive a closed – form solution for the price of a 
European call option on an asset with stochastic volatility. The Heston model assumes that tS , the price 
of the asset, is determined by a stochastic process: 
 S

t t t t tdS S dt v S dW                                            (1) 

where 0  , tv  the instantaneous variance  is a CIR process: 

( ) v

t v v t t tdv v dt v dW                                                (2) 

and 0, 0, 0v v     , ,S v

t tW W  are Brownian motion with correlation  . 
In 1996, Bates introduced an efficient method is developed for pricing American options on 

stochastic volatility /jump-diffusion processes under systematic jump and volatility risk. The exchange 
rate tS satisfy the following process: 
     S

t t t t t tdS S dt v S dW kdN                         (3) 
     ( ) v

t v v t t tdv v dt v dW      
where k is the random percentage jump conditional on a jump occurring and tN is a Poisson process with 
constant intensity  . 
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2. Model Descriptions 
The propose model assumes that the underlying asset has the following dynamics under risk-

neutral measure, 

( ) St
t t t t t

t

dS
r m dt v dW Y dN

S
                    

( ) v

t v v t t tdv v dt v dW      
( )t t t td dt v dW 

               (4)       
                    where tS , tv , v , v ,  , tY , tN , S

tW  and v

tW  are define (1), (2) and (3). r  is the risk-
free rate , m  is the expected of tY ,   is a mean-reverting rate. We assume that jump process tN are 
independent of S

tW , v

tW  and 
tW  . A standard Brownian motion tW  , S

tW  and v

tW  are independent. 
 
3. Characteristic Functions 
 Denote the characteristic function as  
   ( , , , ; ) [ | , ]T

ixX

t tf l v t x E e X l v v                                         (5) 
where T t  and 1i   . Then, the following theorem holds. 
Theorem 3.1 Suppose that tS  follows the dynamics in (4). Then the characteristic function for TX  
defined in (5) is given by  
 

( , , , ; ) exp( ( ) ( ) ( ) )f l v t x ixl ixr A B v C          , 
 

where 
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 1 ( )vr u H    ,  2 ( )vr u H     ,  2 2 2( ) ( )vH u u u       

 1q E  ,   2q E   ,  2 22E F    ,   ( 1) ( )uy

YF mu e y dy




     

 and ( )Y y  is a density of random jump size tY .  
 

Proof   Feynman-Kac formula gives the following PDE for the characteristic function  

 21 1 1
( ) ( ) ( )

2 2 2
l ll v v v vv lvr v m f vf v f vf vf v f                   

21
[ ( , , , ; ) ( , , , ; )] ( ) 0

2
Y tf f l y v t f l v t y dy f       





      ,                          (6) 
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( , , , ; ) ixlf l v T x e  . 
Consider form for the characteristic function: 
 

( , , , ; ) exp( ( ) ( ) ( ) )f l v t x ixl ixr A B v C                                     (7) 
 

where T t    and ( 0) ( 0) ( 0)A B C       . 
We plan to substitute equation (7) into equation (6). Firstly, we compute 

2 2, , ( ) , ( ) , ( ) , ( )l ll v vv lvf ixf f x f f B f f B f f ixB f f C f          , 
2( ) , ( )tf C f f ixr A B v C f          , 

( , , , ; ) ( , , , ; ) ixyf l y v t x f l v t x e f    . 
Substitute all terms above in equation (6), 

 2 2 21 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2
v vr v m ixf v x f v B f vB f vixB f                

 2 21
( ) ( ) ( ) ( ) ( ) 0

2

ixy

YC f C f f e y dy ixr A B v C f             




         . 

Let ,ix u then 
2 2 21 1 1

( ) ( ) ( ) ( ) ( )
2 2 2

v vr v m u vu v B vB vuB               

 2 21
( ) ( ) ( ) ( ) 0

2

uy

YC C e y dy ru A B v C             




         . 

We have 
( ) ( )v vA B v C B C               

    2 2 21 1 1
( ) ( ) ( )

2 2 2
vu u B B uB v     

 
     
 

 

    2 21
( ) ( ) ( 1) ( )

2

uy

YC C mu e y dy     




 
     
 

 . 

This leads to the following system : 
   ( ) ( )v vA B C                                        (8) 

   2 2 21 1
( ) ( ) ( ) ( )

2 2
vB u u u B B                                  (9) 

   2 21
( ) ( ) ( 1) ( )

2

uy

YC C C mu e y dy     




     .                               (10) 

In the equation (9) become a Ricatti equation. Let 

     
2

( )
( )

( )
2

G
B

G








  , 

substitute ( )B  in equation (9),  
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Multiply by 
2

( )
2

G


 , 
2

2( ) ( ) ( ) ( ) ( ) 0
4

vG u G u u G


          . 

General solution is 
2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

2 2
1 2( )
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where  

1 ( )vr u H    , 2 2 2( ) ( )vH u u u       

2 ( )vr u H     . 
Note that 2 2

1 2 1 22 , ( )r r H rr u u     .  
The boundary condition 
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Next, consider in equation (10). 
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Similarly in ( )B  , we have  
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Consider in equation (8), 
            ( ) ( )v vA B C         . 
Integrating with respect to , 

    
0 0

( ) ( ) ( )v vA B s ds C s ds
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The proof is now completed. 
 
4.  A  Formula for European Option Pricing 
Following Carr and Madan (1999) , the modified call price ( )Tc k  is defined by 
     ( ) ( )k

T Tc k e C k  for some constant 0   

where ( ) ( ) ( )rT s k

T T

k

C k e e e q s ds



   is the value of a T  maturity call option with strike price ke           

( lnk K ), and ( )Tq s  be the risk-neutral density of the log asset price lnT Ts S . As ( )TC k  is not 
square integrable over ( , )  , the introduction of a damping factor ke  aims at removing this problem.  
 
Theorems 3.2 The Fourier transform of ( )Tc k  exist: 

  ( ) ( )i k

T Te c k dk 




    

Proof 
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,                          (11) 

where f  is the characteristic function defined in theorem 3.1 
 
A sufficient condition for  Tc  to be square-intefrable is given by  (0)T  being finite. This is equivalent to  
   1( ) .TE S   
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Call prices can then be numerically obtained by using the inverse transform: 

( ) ( )
2

k
i k

T T

e
C k e d


   








   

                
0

( )
k

i k

T

e
e d


   




                             (12) 

More precisely, the call price is determined by substituting (11) into (12) and performing the required 
integration. Integration (12) is a direct Fourier transform and lends itself to an application of the FFT.  
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