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Abstract 

A piezoelectric material is represented by an equivalent circuit model which usually has a series LCR circuit 

connected in parallel to another capacitance. Measurement of the values of the components by using impedance 

spectroscopy and complex non-linear least squares is presented. The method is demonstrated by taking an 

example and comparing the calculated values of the components with the assigned values.  
 

1. Introduction 

 Piezoelectrics in single crystalline, ceramics or polymeric  form are very important class of technological 

materials having wide variety of applications such as piezoelectric resonant elements used in frequency 

standards, electric field sensors, electromechanical transducers, chemical and biological sensors, energy 

harvesters, gas igniters, impact sensors etc[1- 3]. In majority of applications the material prepared in certain 

shapes and forms suitable to yield maximum transduction is attached to some other system. In order to achieve 

reproducibility and optimum functioning and power transfer detailed knowledge of electrical behavior of the 

piezoelectric material is desired. This is greatly facilitated by representing the piezoelectric by a suitable 

equivalent circuit model and determining the values of the components used in the model [4-9]. These values 

can be estimated by observing the resonance and anti-resonance frequencies and plotting the total admittance vs 

frequency graphs as well as vector admittance diagrams [10, 11]. Methods have been proposed for obtaining the 

values of the material properties of the resonators by using curve fitting approach and representing the lumped 

circuit elements by complex quantities to include losses [6]. However straight forward ways to decide upon the 

initial guesses for these values are not available. In this paper a method based on impedance spectroscopy is 

presented for obtaining the values of the components of the equivalent circuit model. The approximate values of 

the components are obtained from the spectroscopic and complex plane plots and are further refined by using 

Complex Nonlinear Least Squares (CNLS) procedure.  All the components are taken as real. The basics of 

impedance spectroscopy are explained in the next section followed by expressions for immittance (impedance, 

admittance, electric modulus and permittivity) of the most accepted model of piezoelectrics for ready reference 

and method for obtaining the values of the components.  

 

2. Brief Description of Impedance Spectroscopy  

The technique of Impedance Spectroscopy can be easily understood by considering the impedance behaviour 

of a polycrystalline electronic ceramics. A polycrystalline ceramic comprises a large number of small 

crystallites called grains joined in random orientation. The inter- grain region, called grain-boundary (gb) has 

strained bonds due to mismatch in the grain orientations. The properties of the grain boundaries are therefore 

different from those of the grains. This fact gives rise to some very interesting and useful properties which are 

exploited in the commercial devices [1]. New horizons of applications are being witnessed and contemplated by 

reducing the grain size to nanometer range giving rise to the so-called nanomaterial. For the fabrication of a 

device conducting leads are connected to the ceramic product having a conducting coating or conducting layer. 

The flow of charge from one lead to the other would therefore be influenced by the behaviour of grain, grain 

boundary, and electrode. An electronic component thus can be viewed as a system, comprising grains, grain-

boundary and contact electrode. In order to ensure reproducibility and to develop materials having tailor made 

properties, these so called grain, grain boundary and electrode contributions must be separated out and 

monitored suitably. The method of Complex Impedance Analysis or Impedance Spectroscopy [12] has emerged 

as a very powerful tool for this. The availability of high quality impedance analyzers working over extended 

frequency regions has made impedance spectroscopy an extremely popular field in the last few years and 

increasing trend is being  witnessed for its wide spread  applications in various areas[13, 14] including 

biosciences, medical, agriculture , engineering , electrochemistry etc. It is evident from the enormous amount of 

literature available on the internet. 
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In this method experimentally measured values of complex impedance (Z* = Z’-j Z”, j = 1  )  are plotted  

as a function of frequency or on complex plane i.e., Z” vs Z’. These plots show special features depending upon 

relative contributions from grain, grain boundary and electrode polarization processes. For the case when these 

processes have widely separated time constants distinct semicircular arcs are obtained and when they have time 

constants close to each other depressed looking semicircular arcs or distorted arcs are obtained. A suitable 

model is chosen to represent the material- electrode system and the values of the components used are obtained 

from the intercepts of the arcs on the Z’ axis, peaks in the plots and the values of the frequency where Z” shows 

a maximum. Once the model has been established the effect of processing parameters, additives, electrode etc. 

can be monitored by observing the changes occurring in the values of the components. The choice of a suitable 

equivalent circuit is a difficult process as many equivalent circuit models can give rise to the same simulated 

behaviour. Therefore simple model circuits may be preferred to begin with. A parallel RC circuit has one time 

constant and thus can be used to represent one polarization/ charge transfer process. A general practice is to 

represent one polarization process by one parallel RC combination to start with and then put several such RC’s 

in series each one representing a charge transfer process. The number of these RC’s may be intuitively chosen to 

be equal to the number of polarization / charge transfer processes that seem to be present in the system. Thus a 

simple model for an electronic ceramic could be a combination of three parallel RC circuits connected in series 

representing grain, grain- boundary and contact electrode processes. The choice of the most appropriate circuit 

may be made by taking into consideration the qualitative behaviour and the microstructure of the material. This 

choice is prompted by comparing the experimental plots with the simulated patterns for various possible models 

[12,15,16]. 

 The electrical behavior of a system can be expressed in terms of interrelated functions known as 

impedance (Z* = Z’-j Z”), admittance (Y* = (Z*)
-1

 = Y’+j Y”), permittivity  (* = (j  C0 Z*)
- 1 

= ’ –j ”) and 

modulus (M* = ()
-1

 =j  C0 Z* = M’ + j M”) where j = 1  and = 2f, f being the frequency of the ac 

excitations and C0, the capacitance of the empty cell used to house the sample. Due to specific relationship 

between these broadly termed immittance functions they are used to extract information about the component 

used in the models. It has been reported that study of the ceramic system based on the information conveyed by 

only one of these four functions does not suffice and two functions viz impedance (Z*) and modulus (M*) or 

admittance (Y*) and permittivity (*) should be looked at [12, 17].  Computer programs are used for this 

purpose using graphics. 

 For any dielectric measurement the specimen is placed between the two electrodes. The total capacitance and 

the losses are governed by the dielectric constant and the loss factor of the material. The simplest equivalent 

circuit model for this electrode-specimen system would be a capacitance C with a resistance R in series or 

parallel as shown in Fig.1. Such a circuit will have a single time constant RC and thus can be thought of as 

representing a polarization process with relaxation time RC.       
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   Fig.1  A resistor and capacitor connected in parallel and normalized Z” vs Z’  

            plot for a parallel RC circuit 

 

The value of impedance in parallel combination is given by the equation 
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Writing ZAB  = Z’- j Z”  we have 
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It can be shown that Z’ and Z” satisfy the relation (Z’-Rp/2)
2
 +Z”

2
 = (Rp/2)

2
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This is equation of a circle with center at (RP/2, 0) and radius (RP/2) in a Z” vs Z’ plot. As mentioned earlier, 

impedance is a function of frequency, so if we measure Z” and Z’ at different frequencies and plot the graph 

between Z” and Z’, we should get a circle.  As Z” is a positive quantity we would get a semicircle as shown in 

Fig.1. This plot is known as complex impedance plot. From Eq. (1) we see that at  = 0, Z’ = RP  and Z”= 0.  

This implies that the point (RP, 0) in the complex impedance plot which is the intersection of the semicircle with 

the Z’- axis corresponds to the zero frequency. Therefore if ac measurements are done, i.e., Z’ and Z” are 

experimentally measured at different frequencies then the dc value of resistivity can also be obtained from the 

complex impedance plot. Similarly we find that M’ and M” satisfy the equation (M’-C0/2Cp)
2
 +M”

2
 = (C0/2Cp)

2
  

and the high frequency intercept would yield the value of  C0/2Cp . 

 

3. The Equivalent circuit model of a piezoelectric 

The most accepted model of a piezoelectric resonator [3,18] is shown in Fig. 2 
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Fig. 2 Electric Equivalent of piezoelectric resonator 

where  R11, L11, C11 and C12 are resistance, inductance and capacitance respectively. The real and imaginary part 

of  immittance  function are 

 

    

 21112

2

11

11

12

11

RCL
C

1
C1

R
'Z























    …(2) 

   

 21112

2

11

11

12

2

11

11

2

111211

11

RCL
C

1
C1

L
C

1
RCL

C

1

"Z




























































    …(3)      

2

11

11

2

11

11

C

1
LR

R
'Y













         ,      
122

11

11

2

11

11

11

C

C

1
LR

C

1
L

"Y 

























                …(4)                                    

 




































































2

1112

2

11

1112

12

2

11

11

11

11

2

1112

0

RC
C

1
LC1

C
C

1
L

C

1
LRC

C'M           …(5) 

 

 21112

2

11

1112

110

RC
C

1
LC1

RC
"M

























             …(6) 








































2

11

11

2

110

11

11

0

12

C

1
LRC

C

1
L

C

C
'

          




























2

11

11

2

110

11

C

1
LRC

R
"

     …(7)   

 

 

- 75 -



The 15th International Conference of International Academy of Physical Sciences Dec 9 - 13, 2012, Pathumthani, Thailand 

 

The limiting values of the immittance functions at very low and very high frequencies are   
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 It is known that the above circuit shows two resonance frequencies given by 1/(L11C11) and 1/(L11C11 

C12/(C11+C12)) for low R11 [18]. These so called resonance and anti resonance frequencies may be obtained by 

finding the frequencies where Z” equals zero. Generally these two frequencies are very close to each other. The 

variation of absolute impedance as function of frequency is shown in    Fig. 3.     
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Fig 3.  Plot of Absolute value of Z vs Log10(F) 

 

It is interesting to note that information about the circuit is contained within these two frequencies. Let us 

analyze the behaviour near the resonance frequency r =1/(L11C11 . It can be shown that the values of Z’ and 

Z” at frequency  close to r , say  r , are given by 
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It is found that Z’ and Z” satisfy the relation  
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This is the equation of a circle. Thus Z” vs. Z’ plot would be a circle with centre at (1/(2r C12 R12), 1/(r C12) )  

and radius 1/(2r C12 R12),  Similarly it is found that real and imaginary parts of Y,   and M satisfy the 

following relations    
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The simulated plots of the immittance functions are obtained and are not shown here. However they are 

similar to those shown in Fig. It can be seen that knowledge of C0 and limiting values of ’ would yield 

estimates for C11 and C12. Also complex plane plots of Y” vs. Y’ measured at frequencies close to resonance 

would yield a circle with center as (1/(2R11), (r C12) ) and radius at1/(2R11).Values of L11 can be estimated from 

the resonance frequencies. 

 

4. Calculation of correct values of R11, L11, C11 and C12 

 Now we demonstrate that correct values of the equivalent circuit components R11, L11, C11, and C12 can be 

obtained by fitting the experimental values of any  of the immittance function to the corresponding expression 

by applying the method of Complex Nonlinear Least Squares (CNLS) [12,15, 19] and using the values obtained 

earlier by looking at the plots as initial guesses. 

 For this we generated immittance data by using the values of  R11, L11, C11 and C12 as taken by Sherrit [6] 

viz. R11 = 37.67 ,  L11 = 5.420 x 10
-5

 H, C11 =  4.987 x 10
-10

 F, C12 = 1.945 x 10
-9

 F and plotted as function of 

frequency as well as in complex plane. These are shown by dark circles. For the demonstration of our procedure 

we treat these immittance values as experimentally observed values. By looking at the experimental values of    

’ vs. log10F as F tends to infinity and to zero we get C12/ C0= 800, and (C11+ C12)/C0 = 1300 from the low 

frequency and high frequency ends. Taking C0 = 2x 10
-12

 F which is the value of the capacitance of the empty 

cell containing two parallel plates of diameter 10 mm and separated by 1 mm as is usually the case in our 

laboratory  we find C11= 4 x 10
-10

 F and C12= 1.6 x 10
-9

 F. Now looking at the Y” vs. Y’ plot which is a circle 

and at its centre  as shown by the dark points in Fig.6 and using Eq. 12) the value of R11 is estimated to be 36.4 

Ohm as obtained from the  radius of the circle. As commented earlier Y” vs Y’ plot is a circle with radius  ( 

1/(2R11)   and centre  at  ( 1/(2R11), (r C12) )  . Using the value of C12 obtained above and the Y coordinate of 

the centre from the graph which is equal to 0.0112 we get the value of r as 7 x 10
6
. This yields a value of 

1.1x10
6
 Hz as the resonating frequency. Now using the formula r=1/(L11C11  the value of L11 is obtained as 

5.1 X 10
-5

 H.  These rough estimates ie  R11 =36.4  ,L11 =5.1 x 10
-5

 H , C11= 4 x 10
-10

 F and C12=1.6 x 10
-9

 F 

are used as initial guesses and their correct values are obtained by fitting the experimental data to the 

expressions of the immittance functions given above in Eqns. (11) to (14) [19]. The correct values are (37.670 

±1.169) x10
-6

 , (5.420±0.001) x10
-5

 H,  (4.987 ±0.001) x 10
-10

 F  and (1.945 ±0.001 )x 10
-9

 F respectively. The 

fitted and experimental values of Z*, Y*, M*, * are shown in Fig.4 where continuous line show the value of 

immittance function calculated after the fit. It is to be emphasized that this method can be widely used for 

determining the values of components used in other models of piezoelectrics as well [20]. 
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Fig.4  Experimental and fitted  plots  of real and imaginary parts of Z ,Y, M and   vs.  

           Log10(F)  and their corresponding complex plane plots. 
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