SMALL SIMPLE QUASI-INJECTIVE MODULES

APICHART SA-NGUANNAM

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI ACADEMIC YEAR 2012

COPYRIGHT OF RAJAMANGALA UNIVERSITY

OF TECHNOLOGY THANYABURI

SMALL SIMPLE QUASI-INJECTIVE MODULES

APICHART SA-NGUANNAM

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI ACADEMIC YEAR 2012

COPYRIGHT OF RAJAMANGALA UNIVERSITY

OF TECHNOLOGY THANYABURI

Thesis Title	Small Simple Quasi-injective Modules
Name - Surname	Mr. Apichart Sa-nguannam
Program	Mathematics
Thesis Advisor	Assistant Professor Sarun Wongwai, Ph.D.
Academic Year	2012

THESIS COMMITTEE

(Associate Professor Virat Chansiriratana, M.Ed.)

(Assistant Professor Nangnouy Songkampol, M.Ed.)

(Assistant Professor Maneenat Kaewneam, Ph.D.)

(Assistant Professor Sarun Wongwai, Ph.D.)

Approved by the Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi in Partial Fulfillment of the Requirements for the Master's Degree
\qquad Dean of the Faculty of Science and Technology
(Assistant Professor Sirikhae Pongswat, Ph.D.)

Date...7...Month...October...Years...2012...

Thesis Title

Name - Surname
Program
Thesis Advisor
Academic Year

Small Simple Quasi-injective Modules
Mr. Apichart Sa-nguannam
Mathematics
Assistant Professor Sarun Wongwai, Ph.D.
2012

Abstract

The purposes of this thesis are to (1) study properties and characterizations of small simple quasi-injective modules, (2) study properties and characterizations of endomorphism rings of small simple quasi-injective modules, (3) extend the concept of small principally quasi-injective modules, and (4) find some relations between small simple quasi-injective modules, small principally quasi-injective modules and projective modules.

Let R be a ring. A right R-module M is called mininjective if, for each simple right ideal K of R, every R-homomorphism $\gamma: K \rightarrow M$ extends to an R-homomorphism from R to M. A right R-module N is called small principally M-injective if every R-homomorphism from a small and principal submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called small principally quasi-injective if it is small principally M-injective. The notion of small principally quasi-injective modules is extended to be small simple quasi-injective modules. A right R-module N is called small simple M-injective if every R-homomorphism from a small and simple submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called small simple quasi-injective if it is small simple M-injective.

The results were as follows. (1) The following conditions are equivalent for a projective module M : (a) every small and simple submodule of M is projective; (b) every factor module of a small simple M-injective module is small simple M-injective; (c) every factor module of an injective R-module is small simple M-injective. (2) Let M be a right R-module and $S=\operatorname{End}_{R}(M)$. Then the following conditions are equivalent: (a) M is small simple quasi-injective;
(b) if $m R$ is small and simple, $m \in M$, then $l_{M} r_{R}(m)=S m$; (c) if $m R$ is small and simple and $r_{R}(m) \subset r_{R}(n), m, n \in M$, then $S n \subset S m$; (d) if $m R$ is small and simple, $m \in M$, then $l_{M}\left(r_{R}(m) \cap a R\right)=l_{M}(a)+S m$ for all $a \in R$; (e) if $m R$ is small and simple, $m \in M$, and $\gamma: m R \rightarrow M$ is an R-homomorphism, then $\gamma(m) \in S m$. (3) Let M be a principal nonsingular module which is a principal self-generator and $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$. If M is small simple quasi-injective, then $J(S)=0$.

Keywords: Small Simple Quasi-injective Modules, Small Principally Quasi-injective Modules, Endomorphism Rings

หัวข้อวิทยานิพนธ์	มอดูลแบบสมอลซิมเปิลควอซี-อินเจคทีฟ
ชื่อ-นามสกุล	นายอภิชาติ สงวนนาม
สาขาวิชา	คณิตศาสตร์
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์ ศรัณย์ ว่องไว, วท.ด.
ปีการศึกษา	2555

บทคัดย่อ

วิทยานิพนธ์นี้มีวัตถุประสงค์เพื่อ (1) ศึกษาสมบัติและลักษณะเฉพาะของมอดูลแบบสมอล ซิมเปิลควอซี-อินเจคทีฟ (2) ศึกษาสมบัติและลักษณะเฉพาะของริงอันตรสัณฐานของมอดูลแบบ สมอลซิมเปิลควอซี-อินเจคทีฟ (3) ขยายแนวคิดของมอดูลแบบสมอลพรินซิแพ็ลลีควอซี-อินเจคทีฟ และ (4) หาความสัมพันธ์ระหว่างมอดูลแบบสมอลซิมเปิลควอซี-อินเจคทีฟ มอดูลแบบสมอล พรินซิแพ็ลลีควอซี-อินเจคทีฟและมอดูลแบบโปรเจคทีฟ

กำหนดให้ R เป็นริง จะเรียก R-มอดูลทางขวา M ว่า มินอินเจคทีฟ ก็ต่อเมื่อสำหรับแต่ละ อุดมคติทางขวาแบบซิมเปิล K ของ R, ทุกๆ R-สาทิสสัณฐาน $\gamma: K \rightarrow M$ สามารถขยายไปยัง R-สาทิสสัณฐานจาก R ไปยัง M จะเรียก R-มอดูลทางขวา N ว่า สมอลพรินซิแพ็ลลี M-อินเจคทีฟ ก็ต่อเมื่อสำหรับแต่ละ R-สาทิสสัณฐานจากมอดูลย่อยแบบสมอลและพรินซิแพ็ลของ M ไปยัง N สามารถขยายไปยัง R-สาทิสสัณฐานจาก M ไปยัง N จะเรียก R-มอดูลทางขวา M ว่า สมอลพรินซิแพ็ล ลีควอซี-อินเจคทีฟ ก็ต่อเมื่อ M เป็นสมอลพรินซิแพ็ลลี M-อินเจคทีฟ เราทำการขยายแนวคิด ของมอดูลแบบสมอลพรินซิแพ็ลลีควอซี-อินเจคทีฟ มาเป็นมอดูลแบบสมอลซิมเปิลควอซี-อินเจคทีฟ โดยจะเรียก R-มอดูลทางขวา N ว่า สมอลซิมเปิล M-อินเจคทีฟ ก็ต่อเมื่อสำหรับแต่ละ R-สาทิสสัณฐานจากมอดูลย่อยแบบสมอลและซิมเปิลของ M ไปยัง N สามารถขยายไปยัง R-สาทิสสัณฐานจาก M ไปยัง N จะเรียก R-มอดูลทางขวา M ว่า สมอลซิมเปิลควอซี-อินเจคทีฟ ก็ต่อเมื่อ M เป็นสมอลซิมเปิล M-อินเจคทีฟ

ผลการวิจัยพบว่า (1) สำหรับมอดูลแบบโปรเจคทีฟ M จะได้ว่าเงื่อนไขดังต่อไปนี้มีความ สมมูลกัน (a) ทุกๆมอดูลย่อยแบบสมอลและซิมเปิลของ M เป็นมอดูลแบบโปรเจคทีฟ (b) ทุกๆแฟค เตอร์มอดูลของมอดูลแบบสมอลซิมเปิล M-อินเจคทีฟ เป็นมอดูลแบบสมอลซิมเปิล M-อินเจคทีฟ (c) ทุกๆแฟคเตอร์มอดูลของ R-มอดูลแบบอินเจคทีฟ เป็นมอดูลแบบสมอลซิมเปิล M-อินเจคทีฟ
(2) กำหนดให้ M เป็น R-มอดูลทางขวาและ $S=\operatorname{End}_{R}(M)$ เป็นริงอันตรสัณฐานของ M แล้วจะได้ว่า เงื่อนไขดังต่อไปนี้มีความสมมูลกัน (a) M เป็นสมอลซิมเปิลควอซี-อินเจคทีฟ (b) ถ้า $m R$ เป็นสมอล และซิมเปิล โดยที่ $m \in M$, แล้วจะได้ว่า $l_{M} r_{R}(m)=S m$. (c) ถ้า $m R$ เป็นสมอลและซิมเปิล และ $r_{R}(m) \subset r_{R}(n)$ โดยที่ $m, n \in M$, แล้วจะได้ว่า $S n \subset S m$. (d) ถ้า $m R$ เป็นสมอลและซิมเปิล โดยที่ $m \in M$, แล้วจะได้ว่า $l_{M}\left(r_{R}(m) \cap a R\right)=l_{M}(a)+S m$ สำหรับทุกๆ $a \in R$. (e) ถ้า $m R$ เป็นสมอลและซิมเปิล โดยที่ $m \in M$, และ $\gamma: m R \rightarrow M$ เป็น R-สาทิสสัณฐาน แล้วจะได้ว่า $\gamma(m) \in S m$. (3) กำหนดให้ M เป็นมอดูลไม่เอกฐานแบบพรินซิแพ็ล ซึ่งก่อกำเนิดตัวเอง แบบพรินซิแพ็ลและ $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$ ถ้า M เป็นมอดูลแบบสมอลซิมเปิลควอซี-อินเจคทีฟ แล้วจะได้ว่า $J(S)=0$.

คำสำคัญ: มอดูลแบบสมอลซิมเปิลควอซี-อินเจคทีฟ มอดูลแบบสมอลพรินซิแพ็ลลีควอซี-อินเจคทีฟ ริงอันตรสัณฐาน

Acknowledgements

For this thesis, first of all, I would like to express my sincere gratitude to my thesis advisor Assistant Professor Dr. Sarun Wongwai for the valuable of guidance and encouragement which helped me in all the time of my research.

Secondly, I would like to thank to the thesis committees, Associate Professor Virat Chansiriratana, Assistant Professor Nangnouy Songkampol and Assistant Professor Dr. Maneenat Kaewneam for their valuable comments and helpful suggestions.

Thirdly, I would like to thank to all of the lecturers, Dr. Nopparat Pochai and Assistant Professor Dr. Gumpon Sritanratana for their valuable lectures and experiences while I was studying.

Fourthly, I would like to thank to Dr. Nonthiya Makate for helpfulness in coordination for documentations.

Finally, I would like to thank to my mother for all her love and encouragement.

Apichart Sa-nguannam

Table of Contents

Page
Abstract. iii
Acknowledgements v
Table of Contents. vi
List of Abbreviations viii
CHAPTER
1 INTRODUCTION
1.1 Background and Statement of the Problems 1
1.2 Purpose of the Study 2
1.3 Research Questions and Hypothesis 2
1.4 Theoretical Perspective. 2
1.5 Delimitations and Limitations of the Study. 3
1.6 Significance of the Study 3
2 LITERATURE REVIEW
2.1 Rings, Modules, Submodules and Endomorphism Rings. 4
2.2 Essential and Superfluous Submodules 8
2.3 Annihilators and Singular Modules 8
2.4 Maximal and Minimal Submodules 9
2.5 Injective and Projective Modules. 10
2.6 Direct Summands and Product of Modules 11
2.7 Generated and Cogenerated Classes. 14
2.8 The Trace and Reject 15
2.9 Socle and Radical of Modules 16
2.10 The Radical of a Ring 17
3 RESEARCH RESULT
3.1 Small Simple M-injective Modules. 19
3.2 Small Simple Quasi-injective Modules 24
List of References 33

Table of Contents (Continued)Page
Appendix 35
Curriculum Vitae 44

List of Abbreviations

$A \oplus B$	A direct sum B
$E n d_{R}(M)$	The set of R-homomorphism from M to M called R-endomorphism of M
F	Field F
$f: M \rightarrow N$	A function f from M to N
$f(M)$	Image of f
$\operatorname{Hom}_{R}(M, N)$	The set of R-homomorphism from M to N
$\operatorname{Im}(f)$	Image of f
$J(M)=\operatorname{Rad}\left(M_{R}\right)$	Jacobson radical of a right R-module M
$J(R)=\operatorname{Rad}\left(R_{R}\right)$	Jacobson radical of a ring R
$J(S)$	Jacobson radical of a ring S
$J(S) \subset{ }_{S} S_{S}$	$J(S)$ is an (two-side) ideal of ring S
$\operatorname{Ker}(f)$	Kernel of f
$l_{M}(A)$	Left annihilator of A in M
M_{R}	M is a right R-module
$M_{1} \times M_{2}$	Cartesian products of M_{1} and M_{2}
M / K	A factor module of M modulo K or a factor module of M by K
$M \cong N$	M isomorphic N N
R	Ring R
R_{R}	Ring R is a right R-module is called Regular right R-module
$\operatorname{Rej}_{M}(\mathcal{U})$	Reject of U in M
R-module	Module over ring R
$r_{R}(X)$	Right annihilator of X in R
$\operatorname{Soc}\left(M_{R}\right)$	Socle of module M
$\operatorname{Tr}_{M}(\mathcal{U})$	Trace of \mathcal{U} in M

List of Abbreviations (Continued)

$Z(M)$	Singular submodule of M
1_{M}	Identity map on set M
$\left(\begin{array}{ll}F & F \\ F & F\end{array}\right)=M_{2}(F)$	The set of all 2×2 matrices having elements of F as entries
$\eta: M \rightarrow M / K$	$\eta($ eta) is the natural epimorphism of M onto M / K
$\boldsymbol{l}=\boldsymbol{l}_{A \subset B}: A \rightarrow B$	l (iota) is the inclusion map of A in B
$\varphi^{-1}(\operatorname{Ker}(s))$	Inverse image of $\operatorname{Ker}(s)$ under $\varphi(p h i)$
π_{j}	π_{j} is the j-th projection map
\forall	For all
\cap	Intersection of set
$\not \subset$	is not subset
\subset	subset
ϵ	is in, member of set
\subset^{e}	Essential (Large) submodule
<	Superfluous (Small) submodule
$\begin{aligned} & \prod_{i \in I} N_{i} \\ & \bigoplus_{i=1}^{n} N_{i} \end{aligned}$	Direct product of N_{i} Direct sum of N_{i}

CHAPTER 1

INTRODUCTION

In modules and rings theory research field, there are three methods for doing the research. Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings. Secondly, to study about the modules over special rings. Thirdly, to study about ring R by way of the categories of R-modules. Many mathematicians have concentrated on these methods.

1.1 Background and Statement of the Problems

Many generalizations of the injectivity were obtained, e.g. principally injectivity and mininjectivity. In [2], V. Camillo introduced the definition of principally injective modules by calling a right R-module M is principally injective if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M.

In [7], [8] and [9], Nicholson and Yousif studied to the structure of principally injective rings, mininjective modules and principally quasi-injective modules. They gave some applications of these rings and modules. From [7], a ring R is called right principally injective if every R-homomorphism from a principal right ideal of R to R can be extended to an R-homomorphism from R to R. From [8], a right R-module M is called mininjective if, for each simple right ideal K of R, every R-homomorphism $\gamma: K \rightarrow M$ extends to an R-homomorphism from R to M. Following from [9], they introduced the definition of principally quasi-injective modules by calling a right R-module M is principally quasi-injective if every R-homomorphism from a principal submodule of M to M can be extended to an R-endomorphism of M.

In [18] and [19], Sarun Wongwai introduced the definitions of small principally quasi-injective modules and quasi-small principally injective modules. Following from [18], a right R-module N is called small principally M-injective (briefly, $S P$ - M-injective) if every R-homomorphism from a small and principal submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called small principally quasi-injective (briefly, $S P Q$-injective) if it is $S P$ - M-injective.

Following from [19], a right R-module N is called M-small principally-injective (briefly, M-small P-injective) if every R-homomorphism from an M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-small principally-injective (briefly, quasi-small P-injective) if it is M-small P-injective.

1.2 Purpose of the Study

In this thesis, we have the purposes of study which are to extend concept of the previous works and to generalize new concepts which are :
1.2.1 To extend the concept of mininjective modules.
1.2.2 To generalize the concept of small principally quasi-injective modules.
1.2.3 To establish and extend some new concepts which are dual to small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].

1.3 Research Questions and Hypothesis

We are interested in seeing to extend the characterizations and properties which remain valid from these previous concepts which can be extended from principally injective modules [2], principally-injective rings [7], mininjective modules [8], principally quasi-injective modules [9], small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].

In this research, we introduce the definition of small simple quasi-injective modules and give characterizations and properties of these modules which are extended from the previous works.

By let M be a right R-module. A right R-module N is called small simple M-injective if every R-homomorphism from a small and simple submodule of M to N can be extended to an R-homomorphism from M to N. Dually, a right R-module M is called small simple quasi-injective if it is small simple M-injective. Many of results in this research are extended from principally injective rings [7], mininjective rings [8], small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].

1.4 Theoretical Perspective

In this thesis, we use many of the fundamental theories which are concerned to the rings
and modules research. By the concerned theories are :
1.4.1 The fundamental of algebra theories.
1.4.2 The basic properties of rings and modules theory.

1.5 Delimitations and Limitations of the Study

For this thesis, we have the scopes and the limitations of studying which are concerned to the previous works which are:

1.5.1 To extend the concept of mininjective modules.

1.5.2 To extend the concept of small principally quasi-injective modules and quai-small P-injective modules.
1.5.3 To characterize the concept in 1.5.2 and find some new properties.

1.6 Significance of the Study

The advantage of education and studying in this research, we can improve and develop the concepts and knowledge in the algebra and modules research field.

CHAPTER 2

LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the modules and rings theory which are used in this thesis.

2.1 Rings, Modules, Submodules and Endomorphism Rings

This section is assembled summary of various notations, terminology and some background theories which are concerned and used for this thesis.
2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary operations + and \cdot, called addition and multiplication (also called product), respectively, such that
(1) $(R,+)$ is an additive abelian group.
(2) (R, \cdot) is a multiplicative semigroup.
(3) Multiplication is distributive (on both sides) over addition; that is, for all $a, b, c \in R, a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.

The two distributive laws are respectively called the left distributive law and the right distributive law.

A commutative ring is a ring R in which multiplication is commutative; i.e. if $a \cdot b=b \cdot a$ for all $a, b \in R$. If a ring is not commutative it is called noncommutative.

A ring with unity is a ring R in which the multiplicative semigroup (R, \cdot) has an identity element; that is, there exists $e \in R$ such that $e a=a=a e$ for all $a \in R$. The element e is called unity or the identity element of R. Generally, the unity or identity element is denoted by 1 .

In this thesis, R will be an associative ring with identity.
2.1.2 Definition. [14] A nonempty subset I of a ring R is called an ideal of R if
(1) $a, b \in I$ implies $a-b \in I$.
(2) $a \in I$ and $r \in R$ imply $a r \in I$ and $r a \in I$.
2.1.3 Definition. [13] A subgroup I of $(R,+)$ is called a left ideal of R if $R I \subset I$, and a right ideal if $I R \subset I$.
2.1.4 Definition. [14] A right ideal I of a ring R is called principal if $I=a R$ for some $a \in R$.
2.1.5 Definition. [14] Let R be a ring, M an additive abelian group and $(m, r) \mapsto m r$, a mapping of $M \times R$ into M such that
(1) $m r \in M$
(2) $\left(m_{1}+m_{2}\right) r=m_{1} r+m_{2} r$
(3) $m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}$
(4) $\left(m r_{1}\right) r_{2}=m\left(r_{1} r_{2}\right)$
(5) $m \cdot 1=m$
for all $r, r_{1}, r_{2} \in R$ and $m, m_{1}, m_{2} \in M$. Then M is called a right R-module, often written as M_{R}.
Often $m r$ is called the scalar multiplication or just multiplication of m by r on right. We define left R-module similarly.
2.1.6 Definition. [13] Let M be a right R-module. A subgroup N of $(M,+)$ is called a submodule of M if N is closed under multiplication with elements in R, that is $n r \in N$ for all $n \in N$, $r \in R$. Then N is also a right R-module by the operations induced from M :

$$
N \times R \rightarrow N,(n, r) \mapsto n r, \text { for all } n \in N, r \in R
$$

2.1.7 Proposition. A subset N of an R-module M is a submodule of M if and only if
(1) $0 \in N$.
(2) $n_{1}, n_{2} \in N$ implies $n_{1}-n_{2} \in N$.
(3) $n \in N, r \in R$ implies $n r \in N$.

Proof. See [15, Lemma 5.3].
2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of M. Then the set of cosets

$$
M / K=\{x+K \mid x \in M\}
$$

is a right R-module relative to the addition and scalar multiplication defined via

$$
(x+K)+(y+K)=(x+y)+K \quad \text { and } \quad(x+K) r=x r+K
$$

The additive identity and inverses are given by

$$
K=0+K \quad \text { and } \quad-(x+K)=-x+K
$$

The module M / K is called (the right R-factor module of) M modulo K or the factor module of M by K.
2.1.9 Definition. [13] Let M and N be right R-modules. A function $f: M \rightarrow N$ is called an (R-module) homomorphism if for all $m, m_{1}, m_{2} \in M$ and $r \in R$

$$
f\left(m_{1} r+m_{2}\right)=f\left(m_{1}\right) r+f\left(m_{2}\right) .
$$

Equivalently, $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$ and $f(m r)=f(m) r$.
The set of R-homomorphisms of M in N is denoted by $\operatorname{Hom}_{R}(M, N)$. In particular, with this addition and the composition of mappings, $\operatorname{Hom}_{R}(M, M)=\operatorname{End}_{R}(M)$ becomes a ring, called the endomorphism ring of M.
2.1.10 Definition. [1] Let $f: M \rightarrow N$ be an R-homomorphism. Then
(1) f is called R-monomorphism (or R-monic) if f is injective (one-to-one).
(2) f is called R-epimorphism (or R-epic) if f is surjective (onto).
(3) f is called R-isomorphism if f is bijective (one-to-one and onto).

Two modules M and N are said to be R-isomorphic, abbreviated $M \cong N$ in case there is an R-isomorphism $f: M \rightarrow N$.

Note: An R-homomorphism $f: M \rightarrow M$ is called an R-endomorphism.
2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping $\eta_{K}: M \rightarrow M / K$ from M onto the factor module M / K defined by

$$
\eta_{K}(x)=x+K \in M / K \quad(x \in M)
$$

is seen to be an R-epimorphism with kernel K. We call η_{K} the natural epimorphism of M onto M / K.
2.1.12 Definition. [1] Let $A \subset B$. Then the function $l=l_{A \subset B}: A \rightarrow B$ defined by $l=\left(1_{B \mid A}\right): a \mapsto a$ for all $a \in A$ is called the inclusion map of A in B. Note that if $A \subseteq B$ and $A \subseteq C$, and if $B \neq C$, then $l_{A \subseteq B} \neq l_{A \subseteq C}$. Of course $1_{A}=l_{A \subseteq A}$.
2.1.13 Definition. [14] Let M and N be right R-modules and let $f: M \rightarrow N$ be an R-homomorphism. Then the set

$$
\operatorname{Ker}(f)=\{x \in M \mid f(x)=0\} \text { is called the kernel of } f
$$

and
$f(M)=\{f(x) \in N \mid x \in M\}$ is called the homomorphic image (or simply image) of M under f and is denoted by $\operatorname{Im}(f)$.
2.1.14 Proposition. Let M and N be right R-modules and let $f: M \rightarrow N$ be an R-homomorphism. Then
(1) $\operatorname{Ker}(f)$ is a submodule of M.
(2) $\operatorname{Im}(f)=f(M)$ is a submodule of N.

Proof. See [13, 6.5].
2.1.15 Proposition. Let M and N be right R-modules and let $f: M \rightarrow N$ be an R-isomorphism. Then the inverse mapping $f^{-1}: N \rightarrow M$ is an R-isomorphism.

Proof. See [14, Chapter 14, 3].

2.2 Essential and Superfluous Submodules

In this section, we give the definitions of essential and superfluous submodules and some theories which are used in this thesis.
2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M, abbreviated $K \subset^{e} M$, if for every submodule L of $M, K \cap L=0$ implies $L=0$.
2.2.2 Definition. [13] A submodule K of M is called superfluous (or small) in M, abbreviated $K \ll M$, if for every submodule L of $M, K+L=M$ implies $L=M$.
2.2.3 Proposition. Let M be a right R-module with submodules $K \subset N \subset M$ and $H \subset M$. Then
(1) $N \ll M$ if and only if $K \ll M$ and $N / K \ll M / K$;
(2) $H+K \ll M$ if and only if $H \ll M$ and $K \ll M$.

Proof. See [1, Proposition 5.17].
2.2.4 Proposition. If $K \ll M$ and $f: M \rightarrow N$ is a homomorphism then $f(K) \ll N$. In particular, if $K \ll M \subset N$ then $K \ll N$.

Proof. See [1, Proposition 5.18].

2.3 Annihilators and Singular Modules

In this section, we give the definitions of annihilators, singular modules and some theories which are used in this thesis.
2.3.1 Definition. [1] Let M be a right (resp. left) R-module. For each $X \subset M$, the right (resp. left) annihilator of X in R is defined by

$$
r_{R}(X)=\{r \in R \mid x r=0, \forall x \in X\}\left(\text { resp. } l_{R}(X)=\{r \in R \mid r x=0, \forall x \in X\}\right) .
$$

For a singleton $\{x\}$, we usually abbreviated to $r_{R}(x)\left(\operatorname{resp} . l_{R}(x)\right)$.
2.3.2 Proposition. Let M be a right R-module, let X and Y be subsets of M and let A and B be subsets of R. Then
(1) $r_{R}(X)$ is a right ideal of R.
(2) $X \subset Y$ imples $r_{R}(Y) \subset r_{R}(X)$.
(3) $A \subset B$ imples $l_{M}(B) \subset l_{M}(A)$.
(4) $X \subset l_{M} r_{R}(X)$ and $A \subset r_{R} l_{M}(A)$.

Proof. See [1, Proposition 2.14 and Proposition 2.15].
2.3.3 Proposition. Let M and N be right R-modules and let $f: M \rightarrow N$ be a homomorphism. If N^{\prime} is an essential submodule of N, then $f^{-1}\left(N^{\prime}\right)$ is an essential submodule of M. Proof. See [4, Lemma 5.8(a)].
2.3.4 Proposition. Let M be a right R-module over an arbitrary ring R, the set

$$
Z(M)=\left\{x \in M \mid r_{R}(x) \text { is essential in } R_{R}\right\}
$$

is a submodule of M.
Proof. See [4, Lemma 5.9].
2.3.5 Definition. [4] The submodule $Z(M)=\left\{x \in M \mid r_{R}(x)\right.$ is essential in $\left.R_{R}\right\}$ is called the singular submodule of M. The module M is called a singular module if $Z(M)=M$. The module M is called a nonsingular module if $Z(M)=0$.

2.4 Maximal and Minimal Submodules

In this section, we give the definitions and some properties of maximal submodules, minimal (or simple) submodules and some theories which are used in this thesis.
2.4.1 Definition. [13] A right R-module M is called simple if $M \neq 0$ and M has no submodules except 0 and M.
2.4.2 Definition. [13] A submodule K of M is called maximal submodule of M if $K \neq M$ and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if, $K \neq M$ and for every $A \subset M, K \subset A$ implies $K=A$.
2.4.3 Definition. [13] A submodule N of M is called minimal (or simple) submodule of M if $N \neq 0$ and it has no non-zero proper submodules of M, i.e. N is minimal (or simple) in M if $N \neq 0$ and for every non-zero submodule A of $M, A \subset N$ implies $A=N$.
2.4.4 Proposition. Let M and N be right R-modules. If $f: M \rightarrow N$ is an epimorphism with $\operatorname{Ker}(f)=K$, then there is a unique isomorphism $\sigma: M / K \rightarrow N$ such that $\sigma(m+K)=f(m)$ for all $m \in M$.

Proof. See [1, Corollary 3.7].
2.4.5 Proposition. Let K be a submodule of M. A factor module M / K is simple if and only if K is a maximal submodule of M.

Proof. See [1, Corollary 2.10].

2.5 Injective and Projective Modules

In this section, we give the definitions of the injective modules, injective testing, projective modules and some theories which are used in this thesis.
2.5.1 Definition. [1] Let M be a right R-module. A right R-module U is called injective relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism $\varphi: K \rightarrow U$ can be extended to a homomorphism $\alpha: M \rightarrow U$.

A right R-module U is said to be injective if it is M-injective for every right R-module M.
2.5.2 Proposition. The following statements about a right R-module U are equivalent :
(1) U is injective;
(2) U is injective relative to R;
(3) For every right ideal $I \subset R_{R}$ and every homomorphism $h: I \rightarrow U$ there exists an $x \in U$ such that h is left multiplicative by x

$$
h(a)=x a \text { for all } a \in I
$$

Proof. See [1, 18.3, Baer's Criterion].
2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called projective relative to M (or U is M-projective) if for every N_{R}, every epimorphism $g: M_{R} \rightarrow N_{R}$, for every homomorphism $\gamma: U_{R} \rightarrow N_{R}$ can be lifted to an R-homomorphism $\hat{\gamma}: U \rightarrow M$.

A right R-module U is said to be projective if it is projective for every right R-module M.
2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an injective right (resp. left) R-module.

Proof. See [1, Proposition 18.6].

2.6 Direct Summands and Product of Modules

Given two modules M_{1} and M_{2} we can construct their Cartesian product $M_{1} \times M_{2}$. The structure of this product module is then determined "co-ordinatewise" from the factors $M_{1} \times M_{2}$. For this section we give the definitions of direct summand, the projection and the injection maps, product of modules and some theories which are used in this thesis.
2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called a direct summand of M if there is a submodule Y of M such that $X \cap Y=0$ and $X+Y=M$. We write $M=X \oplus Y$; such that Y is also a direct summand.
2.6.2 Definition. [1] Let M_{1} and M_{2} be R-modules. Then with their products module $M_{1} \times M_{2}$ are associated the natural injections and projections

$$
\varphi_{j}: M_{j} \rightarrow M_{1} \times M_{2} \quad \text { and } \quad \pi_{j}: M_{1} \times M_{2} \rightarrow M_{j}
$$

$(j=1,2)$, are defined by

$$
\varphi_{1}\left(x_{1}\right)=\left(x_{1}, 0\right), \quad \varphi_{2}\left(x_{2}\right)=\left(0, x_{2}\right)
$$

and

$$
\pi_{1}\left(x_{1}, x_{2}\right)=x_{1}, \quad \pi_{2}\left(x_{1}, x_{2}\right)=x_{2}
$$

Moreover, we have

$$
\pi_{1} \varphi_{1}=1_{M_{1}} \quad \text { and } \quad \pi_{2} \varphi_{2}=1_{M_{2}}
$$

2.6.3 Definition. [1] Let A be a direct summand of M with complementary direct summand B, so $M=A \oplus B$. Then

$$
\pi_{A}: a+b \mapsto a \quad(a \in A, b \in B)
$$

defines an epimorphism $\pi_{A}: M \rightarrow A$ is called the projection of M on A along B.
2.6.4 Definition. [13] Let $\left\{A_{i}, i \in I\right\}$ be a family of objects in the category C. An object P in C with morphisms $\left\{\pi_{i}: P \rightarrow A_{i}\right\}$ is called the product of the family $\left\{A_{i}, i \in I\right\}$ if :

For every family of morphisms $\left\{f_{i}: X \rightarrow A_{i}\right\}$ in the category C, there is a unique morphism $f: X \rightarrow P$ with $\pi_{i} f=f_{i}$ for all $i \in I$.

For the object P, we usually write $\prod_{i \in I} A_{i}, \prod_{I} A_{i}$ or $\prod A_{i}$. If all A_{i} are equal to A, then we put $\prod_{I} A_{i}=A^{I}$.

The morphism π_{i} are called the i-projections of the product. The definition can be described by the following commutative diagram :

2.6.5 Definition. [13] Let $\left\{M_{i}, i \in I\right\}$ be a family of R-modules and $\left(\prod_{i \in I} M_{i}, \pi_{i}\right)$ the product of the M_{i}. For $m, n \in \prod_{i \in I} M_{i}, r \in R$, using

$$
\pi_{i}(m+n)=\pi_{i}(m)+\pi_{i}(n) \quad \text { and } \quad \pi_{i}(m r)=\pi_{i}(m) r,
$$

a right R-module structure is defined on $\prod_{i \in I} M_{i}$ such that the π_{i} are homomorphisms. With this structure $\left(\prod_{i \in I} M_{i}, \pi_{i}\right)$ is the product of the $\left\{M_{i}, i \in I\right\}$ in R-module.

2.6.6 Proposition. Properties:

(1) If $\left\{f_{i}: N \rightarrow M_{i}, i \in I\right\}$ is a family of morphisms, then we get the map

$$
f: N \rightarrow \prod_{i \in I} M_{i} \quad \text { such that } \quad n \mapsto\left(f_{i}(n)\right)_{i \in I}
$$

and $\operatorname{Ker}(f)=\bigcap_{I} \operatorname{Ker}\left(f_{i}\right)$ since $f(n)=0$ if and only if $f_{i}(n)=0$ for all $i \in I$.
(2) For every $j \in I$, we have a canonical embedding

$$
\varepsilon_{j}: M_{j} \rightarrow \prod_{i \in I} M_{i}, \quad \text { such that } \quad m_{j} \mapsto\left(m_{j} \delta_{j i}\right)_{i \in I}, m_{j} \in M_{j}
$$

with $\varepsilon_{j} \pi_{j}=1_{M_{j}}$, i.e. π_{j} is a retraction and ε_{j} a coretraction.

This construction can be extended to larger subsets of I : For a subset $A \subset I$ we form the product $\prod_{i \in A} M_{i}$ and a family of homomorphisms

$$
f_{j}: \prod_{i \in A} M_{i} \rightarrow M_{j}, \quad f_{j}=\left\{\begin{array}{l}
\pi_{j} \text { for } j \in A \\
0 \text { for } j \in I-A
\end{array}\right.
$$

Then there is a unique homomorphism

$$
\varepsilon_{A}: \prod_{i \in A} M_{i} \rightarrow \prod_{i \in I} M_{i} \text { with } \varepsilon_{A} \pi_{j}=\left\{\begin{array}{l}
\pi_{j} \text { for } j \in A \\
0 \text { for } j \in I-A .
\end{array}\right.
$$

The universal property of $\prod_{i \in A} M_{i}$ yields a homomorphism

$$
\pi_{A}: \prod_{i \in I} M_{i} \rightarrow \prod_{i \in A} M_{i} \text { with } \pi_{A} \pi_{j}=\pi_{j} \text { for } j \in A
$$

Together this implies $\varepsilon_{A} \pi_{A} \pi_{j}=\varepsilon_{A} \pi_{j}=\pi_{j}$ for all $j \in I$, and by the properties of the product $\prod_{i \in A} M_{i}$, we get $\varepsilon_{A} \pi_{A}=1_{M_{A}}$.
Proof. See [13, 9.3, Properties (1), (2)]

2.7 Generated and Cogenerated Classes

In this section, we give some definitions and theories of the generated and cogenerated classes which are concerned in this thesis.
2.7.1 Definition. [13] A subset X of a right R-module M is called a generating set of M if $X R=M$. We also say that X generates M or M is generated by X. If there is a finite generating set in M, then M is called finitely generated.
2.7.2 Definition. [1] Let \mathcal{U} be a class of right R-modules. A module M is (finitely) generated by \mathcal{U} (or \mathcal{U} (finitely) generates M) if there exists an epimorphism

$$
\underset{i \in I}{\oplus} U_{i} \rightarrow M
$$

for some (finite) set I and $U_{i} \in U$ for every $i \in I$.
If $U=\{U\}$ is a singleton, then we say that M is (finitely) generated by U or (finitely) U-generates; this means that there exists an epimorphism

$$
U^{(I)} \rightarrow M
$$

for some (finite) set I.
2.7.3 Proposition. If a module M has a generating set $L \subset M$, then there exists an epimorphism

$$
R^{(L)} \rightarrow M
$$

Moreover, M is finitely R-generated if and only if M is finitely generated.
Proof. See [1, Theorem 8.1].
2.7.4 Definition. [17] Let M be a right R-module. A submodule N of M is said to be an M-cyclic submodule of M if it is the image of an endomorphism of M.
2.7.5 Definition. [1] Let U be a class of right R-modules. A module M is (finitely) cogenerated by \mathcal{U} (or \mathcal{U} (finitely) cogenerates M) if there exists a monomorphism

$$
M \rightarrow \prod_{i \in I} U_{i}
$$

for some (finite) set I and $U_{i} \in \mathcal{U}$ for every $i \in I$.
If $\mathcal{U}=\{U\}$ is a singleton, then we say that a module M is (finitely) cogenerated by U or (finitely) U-cogenerates; this means that there exists a monomorphism

$$
M \rightarrow U^{I}
$$

for some (finite) set I.

2.8 The Trace and Reject

In this section, we give some definitions and theories of the trace and reject which are concerned in this thesis.
2.8.1 Definition. [1] Let \mathcal{U} be a class of right R-modules. The trace of \mathcal{U} in M and the reject of U in M are defined by

$$
\operatorname{Tr}_{M}(\mathcal{U})=\sum\{\operatorname{Im}(h) \mid h: U \rightarrow M \text { for some } U \in \mathcal{U}\}
$$

and

$$
\operatorname{Rej}_{M}(\mathcal{U})=\bigcap\{\operatorname{Ker}(h) \mid h: M \rightarrow U \text { for some } U \in \mathcal{U}\} .
$$

If $\mathcal{U}=\{U\}$ is a singleton, then the trace of \mathcal{U} in M and the reject of \mathcal{U} in M are in the form
and

$$
\operatorname{Tr}_{M}(U)=\sum\left\{\operatorname{Im}(h) \mid h \in \operatorname{Hom}_{R}(U, M)\right\}
$$

$$
\operatorname{Rej}_{M}(U)=\bigcap\left\{\operatorname{Ker}(h) \mid h \in \operatorname{Hom}_{R}(M, U)\right\} .
$$

2.8.2 Proposition. Let U be a class of right R-modules and let M be a right R-module. Then
(1) $\operatorname{Tr}_{M}(\mathcal{U})$ is the unique largest submodule L of M generated by \mathcal{U};
(2) $\operatorname{Rej}_{M}(U)$ is the unique smallest submodule K of M such that M / K is cogenerated by \mathcal{U}.

Proof. See [1, Proposition 8.12].

2.9 Socle and Radical of Modules

In this section, we give some definitions and theories of the socle and radical of modules which are used in this thesis.
2.9.1 Definition. [13] Let M be a right R-module. The socle of M, $\operatorname{Soc}(M)$, we denote the sum of all simple submodules of M. If there are no simple submodules in M we put $\operatorname{Soc}(M)=0$.
2.9.2 Definition. [13] Let M be a right R-module. The radical of M, $\operatorname{Rad}(M)$, we denote the intersection of all maximal submodules of M. If M has no maximal submodules we set $\operatorname{Rad}(M)=M$.
2.9.3 Proposition. Let \mathcal{E} be the class of simple R-modules and let M be an R-module. Then

$$
\begin{aligned}
\operatorname{Soc}(M) & =\operatorname{Tr}_{M}(\mathcal{E}) \\
& =\cap\{L \subset M \mid L \text { is essential in } M\} .
\end{aligned}
$$

Proof. See [13, 21.1].
2.9.4 Proposition. Let \mathcal{E} be the class of simple R-modules and let M be an R-module. Then

$$
\begin{aligned}
\operatorname{Rad}(M) & =\operatorname{Rej}_{M}(\varepsilon) \\
& =\sum\{L \subset M \mid L \text { is superfluous in } M\} .
\end{aligned}
$$

Proof. See [13, 21.5].
2.9.5 Proposition. Let M be a right R-module. A right R-module M is finitely generated if and only if $\operatorname{Rad}(M) \ll M$ and $M / \operatorname{Rad}(M)$ is finitely generated.

Proof. See [13, 21.6, (4)].
2.9.6 Proposition. Let M be a right R-module. Then $\operatorname{Soc}(M) \subset^{e} M$ if and only if every non-zero submodule of M contains a minimal submodule.

Proof. See [1, Corollary 9.10].

2.10 The Radical of a Ring

In this section, we give some definitions and theories of the radical of a ring which are used in this thesis.
2.10.1 Definition. [1] Let R be a ring. The radical $\operatorname{Rad}\left(R_{R}\right)$ of R_{R} is an (two side) ideal of R. This ideal of R is called the (Jacobson) radical of R, and we usually abbreviated by

$$
J(R)=\operatorname{Rad}\left(R_{R}\right)
$$

2.10.2 Definition. [1] Let R be a ring. An element $x \in R$ is called right (left) quasiregular if $1-x$ has a right (resp. left) inverse in R.

An element $x \in R$ is called quasi-regular if it is right and left quasi-regular.
A subset of R is said to be (right, left) quasi-regular if every element in it has the corresponding property.
2.10.3 Proposition. Given a ring R for each of the following subsets of R is equal to the radical $J(R)$ of R.
$\left(J_{1}\right)$ The intersection of all maximal right (left) ideals of R;
$\left(J_{2}\right)$ The intersection of all right (left) primitive ideals of R;
$\left(J_{3}\right)\{x \in R \mid r x s$ is quasi-regular for all $r, s \in R\}$;
$\left(J_{4}\right)\{x \in R \mid r x$ is quasi-regular for all $r \in R\}$;
$\left(J_{5}\right)\{x \in R \mid$ xs is quasi-regular for all $s \in R\}$;
$\left(J_{6}\right)$ The union of all the quasi-regular right (left) ideals of R;
$\left(J_{7}\right)$ The union of all the quasi-regular ideals of R;
$\left(J_{8}\right)$ The unique largest superfluous right (left) ideals of R;
Moreover, $\left(J_{3}\right),\left(J_{4}\right),\left(J_{5}\right),\left(J_{6}\right)$ and $\left(J_{7}\right)$ also describe the radical $J(R)$ if "quasi-regular" is replaced by "right quasi-regular" or by "left quasi-regular".

Proof. See [1, Theorem 15.3].
2.10.4 Proposition. Let R be a ring with radical $J(R)$. Then for every right R-module M,

$$
J(R) M_{R} \subset \operatorname{Rad}\left(M_{R}\right)
$$

If R is semisimple modulo its radical, then for every right R-module,

$$
J(R) M_{R}=\operatorname{Rad}\left(M_{R}\right)
$$

and $M / J(R) M_{R}$ is semisimple.
Proof. See [1, Corollary 15.18].

CHAPTER 3

RESEARCH RESULT

In this chapter, we present the results of small simple M-injective modules and small simple quasi-injective modules.

3.1 Small Simple M-injective Modules

3.1.1 Definition. Let M be a right R-module. A right R-module N is called small simple M-injective if every R-homomorphism from a small and simple submodule of M to N can be extended to an R-homomorphism from M to N.
3.1.2 Lemma. Let M and N be right R-modules. Then N is small simple M-injective if and only if for each small and simple submodule $m R$ of M,

$$
l_{N} r_{R}(m)=\operatorname{Hom}_{R}(M, N) m .
$$

Proof. (\Rightarrow) Let N be a small simple M-injective module and let $m R$ be a small and simple submodule of M. To show that $l_{N} r_{R}(m)=\operatorname{Hom}_{R}(M, N) m$. (\supset) Let $\varphi(m) \in \operatorname{Hom}_{R}(M, N) m$. To show that $\varphi(m) \in l_{N} r_{R}(m)$, i.e. $\varphi(m) r=0$, for every $r \in r_{R}(m)$. Let $r \in r_{R}(m)$. Then $m r=0$. Hence $\varphi(m) r=\varphi(m r)=\varphi(0)=0$. ($\subset)$ Let $x \in l_{N} r_{R}(m)$. To show that $x \in \operatorname{Hom}_{R}(M, N) m$. Define $\varphi: m R \rightarrow x R$ by $\varphi(m r)=x r$ for every $r \in R$. Let $m r_{1}, m r_{2} \in m R$ such that $m r_{1}=m r_{2}$. Then $m r_{1}-m r_{2}=0$, hence $m\left(r_{1}-r_{2}\right)=0$, so $r_{1}-r_{2} \in r_{R}(m)$. Since $x \in l_{N} r_{R}(m)$, $x\left(r_{1}-r_{2}\right)=0$. It follows that $x r_{1}=x r_{2}$. Thus $\varphi\left(m r_{1}\right)=x r_{1}=x r_{2}=\varphi\left(m r_{2}\right)$. This shows that φ is well-defined. Let $m r_{1}, m r_{2} \in m R$ and $r \in R$. Then $\varphi\left(m r_{1} r+m r_{2}\right)=\varphi\left(m\left(r_{1} r+r_{2}\right)\right)=$ $x\left(r_{1} r+r_{2}\right)=x r_{1} r+x r_{2}=\left(x r_{1}\right) r+x r_{2}=\varphi\left(m r_{1}\right) r+\varphi\left(m r_{2}\right)$. This shows that φ is an R-homomorphism. Since N is small simple M-injective, there exists an R-homomorphism
$\hat{\varphi}: M \rightarrow N$ such that $\hat{\varphi} l_{1}=l_{2} \varphi$ where $l_{1}: m R \rightarrow M$ and $l_{2}: x R \rightarrow N$ are the inclusion maps. Then $x=x \cdot 1=\varphi(m \cdot 1)=\varphi(m)=l_{2} \varphi(m)=\hat{\varphi} l_{1}(m)=\hat{\varphi}(m) \in \operatorname{Hom}_{R}(M, N) m$.
(\Leftarrow) To show that N is small simple M-injective. Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow N$ be an R-homomorphism. Let $r \in r_{R}(m)$. Then $m r=0$. Hence $\varphi(m) r=\varphi(m r)=\varphi(0)=0$. This shows that $\varphi(m) \in l_{N} r_{R}(m)$. By assumption, we have $\varphi(m) \in \operatorname{Hom}_{R}(M, N) m$. Then $\varphi\left(\overline{\bar{m})}=\hat{\varphi}(m)\right.$ for some $\hat{\varphi} \in \operatorname{Hom}_{R}(M, N)$. Hence $\varphi(m)=\hat{\varphi}(m)=\hat{\varphi} l(m)$ where $l: m R \rightarrow M$ is the inclusion map. This shows that $\hat{\varphi}$ is an extension of φ.
3.1.3 Example. Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ where F is a field, $M_{R}=R_{R}$ and $N_{R}=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$. Then N is small simple M-injective.

Proof. We have only $X_{1}=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right), X_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & F\end{array}\right), X_{3}=\left(\begin{array}{ll}F & F \\ 0 & 0\end{array}\right), X_{4}=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right), X_{5}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $X_{6}=$ $\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)$ are R-submodules of M. We have non-zero submodule of M two sets are $X_{1}=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ and $X_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & F\end{array}\right)$. We found $X_{1} \ll M$ because for every $X_{n} \subset M, 2 \leq n \leq 5, X_{n} \neq M$ then $X_{1}+X_{n} \neq M$. We found X_{2} is not small in M because $X_{2}+X_{3}=M$. Let $m=\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \in X_{1}$. Then $m R=\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)=X_{1}$. Hence $m R=X_{1}$. This shows that X_{1} is a simple submodule of M. Let $\varphi: X_{1} \rightarrow N$ be an R-homomorphism. Since $1 \in F$, we have $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in X_{1}$, there exists $x_{11}, \quad x_{12} \in F$ such that $\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & 0\end{array}\right)$. Then $\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)=$ $\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}0 & x_{12} \\ 0 & 0\end{array}\right), \quad$ so $\quad x_{11}=0$. Define $\hat{\varphi}: M \rightarrow N$ by $\hat{\varphi}\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{cc}x_{12} a & x_{12} b \\ 0 & 0\end{array}\right)$ for every $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \in\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)$. Let $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right),\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right) \in\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ such that $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)=\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)$. Then $\hat{\varphi}\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\right)=$ $\left(\begin{array}{cc}x_{12} a_{1} & x_{12} b_{1} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x_{12} a_{2} & x_{12} b_{2} \\ 0 & 0\end{array}\right)=\hat{\varphi}\left(\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)$. This shows that $\hat{\varphi}$ is well-defined.

Let $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right),\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right) \in\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ and $\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right) \in\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$. Then $\hat{\varphi}\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)+\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)=$ $\hat{\varphi}\left(\left(\begin{array}{cc}a_{1} x & a_{1} y+b_{1} z \\ 0 & c_{1} z\end{array}\right)+\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)=\hat{\varphi}\left(\left(\begin{array}{cc}a_{1} x+a_{2} & a_{1} y+b_{1} z+b_{2} \\ 0 & c_{1} z+c_{2}\end{array}\right)\right)=\left(\begin{array}{cc}x_{12}\left(a_{1} x+a_{2}\right) & x_{12}\left(a_{1} y+b_{1} z+b_{2}\right) \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{cc}x_{12} a_{1} x+x_{12} a_{2} & x_{12} a_{1} y+x_{12} b_{1} z+x_{12} b_{2} \\ 0 & 0\end{array}\right) \quad=\quad\left(\begin{array}{cc}x_{12} a_{1} x & x_{12} a_{1} y+x_{12} b_{1} z \\ 0 & 0\end{array}\right) \quad+\quad\left(\begin{array}{cc}x_{12} a_{2} & x_{12} b_{2} \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{cc}x_{12} a_{1} & x_{12} b_{1} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)+\left(\begin{array}{cc}x_{12} a_{2} & x_{12} b_{2} \\ 0 & 0\end{array}\right)=\hat{\varphi}\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\right)\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)+\hat{\varphi}\left(\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)$.
This shows that $\hat{\varphi}$ is an R-homomorphism. To show that $\varphi=\hat{\varphi} l$. Let $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \in X_{1}$. Then $\varphi\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right)=\left(\begin{array}{cc}0 & x_{12} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right)=\left(\begin{array}{cc}0 & x_{12} x \\ 0 & 0\end{array}\right)$. Hence $\hat{\varphi} l\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\hat{\varphi}\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & x_{12} x \\ 0 & 0\end{array}\right)$. This shows that $\hat{\varphi}$ is an extension of φ.
3.1.4 Proposition. Let M be a right R-module and let $\left\{N_{i}, i \in I\right\}$ be a family of right R-modules. Then the direct product $\prod_{i \in I} N_{i}$ is small simple M-injective if and only if each N_{i} is small simple M-injective.

Proof. (\Rightarrow) Let $\pi_{i}: \prod_{i \in I} N_{i} \rightarrow N_{i}$ and $\varphi_{i}: N_{i} \rightarrow \prod_{i \in I} N_{i}$, for each $i \in I$, be the i-th projection and the i-th injection maps, respectively. To show that each $i \in I, N_{i}$ is small simple M-injective. Let $i \in I, m R$ a small simple submodule of M and let $\varphi: m R \rightarrow N_{i}$ be an R-homomorphism. Then by assumption, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow \prod_{i \in I} N_{i}$ such that $\varphi_{i} \varphi=\hat{\varphi} l$ where $l: m R \rightarrow M$ is the inclusion map. Hence $\pi_{i} \varphi_{i} \varphi=\pi_{i} \hat{\varphi} l$, so by Definition 2.6.2, $\varphi=\pi_{i} \hat{\varphi} l$. Thus $\pi_{i} \hat{\varphi}$ is an extension of φ.
(\Leftarrow) Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow \prod_{i \in I} N_{i}$ be an R-homomorphism. Since for each $i \in I, N_{i}$ is small simple M-injective, there exits an R-homomorphism $\alpha_{i}: M \rightarrow N_{i}$ such that $\pi_{i} \varphi=\alpha_{i} l$ where $l: m R \rightarrow M$ is the inclusion map and $\pi_{i}: \prod_{i \in I} N_{i} \rightarrow N_{i}$ is the i-th projection map. Then by Definition 2.6.5 and Proposition 2.6.6,
we obtain $\hat{\varphi}: M \rightarrow \prod_{i \in I} N_{i}$ such that $\pi_{i} \hat{\varphi}=\alpha_{i}$. Hence $\pi_{i} \hat{\varphi} l=\alpha_{i} l$, so $\pi_{i} \varphi=\alpha_{i} \imath=\pi_{i} \hat{\varphi} l$. Thus $\pi_{i} \varphi=\pi_{i} \hat{\varphi} l$. Therefore $\varphi=\hat{\varphi} l$.
3.1.5 Lemma. Let $N_{i}(1 \leq i \leq n)$ be small simple M-injective modules. Then $\bigoplus_{i=1}^{n} N_{i}$ is small simple M-injective.

Proof. Assume that for each $1 \leq i \leq n, N_{i}$ is small simple M-injective. To show that $\bigoplus_{i=1}^{n} N_{i}$ is small simple M-injective. Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow \underset{i=1}{\oplus} N_{i}$ be an R-homomorphism. Since for each $1 \leq i \leq n, N_{i}$ is small simple M-injective, there exists an R-homomorphism $\varphi_{i}: M \rightarrow N_{i}$ such that $\pi_{i} \varphi=\varphi_{i} l$ where $l: m R \rightarrow M$ is the inclusion map and $\pi_{i}: \bigoplus_{i=1}^{n} N_{i} \rightarrow N_{i}$ is the i-projection map. Set $\hat{\varphi}=l_{1} \varphi_{1}+l_{2} \varphi_{2}+\ldots+l_{n} \varphi_{n}: M \rightarrow \stackrel{n}{i=1} N_{i}$ where $l_{i}: N_{i} \rightarrow \oplus_{i=1}^{n} N_{i}$ for each $1 \leq i \leq n$ is the i-injection map. To show that $\varphi=\hat{\varphi} l$. Let $m r \in m R$. Then $\hat{\varphi} l(m r)=\hat{\varphi}(m r)=l_{1} \varphi_{1}(m r)+l_{2} \varphi_{2}(m r)+\ldots+l_{n} \varphi_{n}(m r)=$ $\varphi_{1}(m r)+\varphi_{2}(m r)+\ldots+\varphi_{n}(m r)=\pi_{1} \varphi(m r)+\pi_{2} \varphi(m r)+\ldots+\pi_{n} \varphi(m r)=$ $\left(\pi_{1}+\pi_{2}+\ldots+\pi_{n}\right) \varphi(m r)=\varphi(m r)$. Hence $\hat{\varphi}$ is an extension of φ.
3.1.6 Lemma. Any direct summand of a small simple M-injective module is again small simple M-injective module.

Proof. Let N be a small simple M-injective module and let A be a direct summand of N. To show that A is small simple M-injective. Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow A$ be an R-homomorphism. Let $\varphi_{A}: A \rightarrow N$ be the injection map. Since N is small simple M-injective, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow N$ such that $\varphi_{A} \varphi=\hat{\varphi} l$ where $l: m R \rightarrow M$ is the inclusion map. Let $\pi_{A}: N \rightarrow A$ be the projection map. Then $\pi_{A} \varphi_{A} \varphi=\pi_{A} \hat{\varphi} l$. Hence by Definition 2.6.2, $\varphi=\pi_{A} \hat{\varphi} l$. This shows that $\pi_{A} \hat{\varphi}$ is an extension of φ.
3.1.7 Theorem. The following conditions are equivalent for a projective module M.
(1) Every small and simple submodule of M is projective.
(2) Every factor module of a small simple M-injective module is small simple M-injective.
(3) Every factor module of an injective R-module is small simple M-injective.

Proof. (1) $\Rightarrow(2)$ Let N be a small simple M-injective module, X a submodule of $N, m R$ a small and simple submodule of M and let $\varphi: m R \rightarrow N / X$ be an R-homomorphism. Since $m R$ is projective, there exists an R-homomorphism $\alpha: m R \rightarrow N$ such that $\varphi=\eta \alpha$ where $\eta: N \rightarrow N / X$ is the natural R-epimorphism. Since N is small simple M-injective, there exists an R-homomorphism $\beta: M \rightarrow N$ such that $\alpha=\beta l$ where $l: m R \rightarrow M$ is the inclusion map. Then $\varphi=\eta \alpha=\eta \beta l$. Hence $\varphi=\eta \beta l$. This shows that $\eta \beta$ is an extension of φ. Thus N / X is small simple M-injective.
(2) \Rightarrow (3) Let N be an injective R-module and X be a submodule of N. Then by (2), N / X is small simple M-injective.
(3) \Rightarrow (1) Let $m R$ be a small and simple submodule of $M, \alpha: A \rightarrow B$ an R-epimorphism and let $\varphi: m R \rightarrow B$ be an R-homomorphism. Let E be an injective R-module and embed A in E by Proposition 2.5.4. Since α is an R-epimorphism, by Proposition 2.4.4, there exists an R-isomorphism $\sigma: A / \operatorname{Ker}(\alpha) \rightarrow B$ such that $\alpha=\sigma \eta_{1}$ where $\eta_{1}: A \rightarrow A / \operatorname{Ker}(\alpha)$ is the natural R-epimorphism. Then by Proposition 2.1.15, we have $\sigma^{-1}: B \rightarrow A / \operatorname{Ker}(\alpha)$ is an R-isomorphism, so $B \cong A / \operatorname{Ker}(\alpha)$ and $A / \operatorname{Ker}(\alpha) \subset E / \operatorname{Ker}(\alpha)$. By assumption, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow E / \operatorname{Ker}(\alpha)$ such that $l_{1} \sigma^{-1} \varphi=\hat{\varphi} l_{2}$ where $l_{1}: A / \operatorname{Ker}(\alpha) \rightarrow E / \operatorname{Ker}(\alpha)$ and $l_{2}: m R \rightarrow M$ are the inclusion maps. Since M is projective, there exists an R-homomorphism $\beta: M \rightarrow E$ such that $\hat{\varphi}=\eta_{2} \beta$ where $\eta_{2}: E \rightarrow E / \operatorname{Ker}(\alpha)$ is the natural R-epimorphism. Then $\hat{\varphi} l_{2}=\eta_{2} \beta l_{2}$. Hence $l_{1} \sigma^{-1} \varphi=\hat{\varphi} l_{2}=\eta_{2} \beta l_{2}$. It follows that $l_{1} \sigma^{-1} \varphi=\eta_{2} \beta l_{2}$. To show that $\beta(m R) \subset A$. Let $m x \in m R$. Then $l_{1} \sigma^{-1} \varphi(m x)=\eta_{2} \beta l_{2}(m x)=\eta_{2} \beta(m x)=$ $\eta_{2}(\beta(m x))=\beta(m x)+\operatorname{Ker}(\alpha)$. Hence $l_{1} \sigma^{-1} \varphi(m x)=\sigma^{-1} \varphi(m x)=a+\operatorname{Ker}(\alpha)$ for some $a \in A$,
so $\beta(m x)+\operatorname{Ker}(\alpha)=a+\operatorname{Ker}(\alpha)$. Thus $\beta(m x)-a \in \operatorname{Ker}(\alpha)$. It follows that $\beta(m x)=$ $(\beta(m x)-a)+a \in \operatorname{Ker}(\alpha)+A=A$. To show that $\varphi=\alpha \beta$. Let $m x \in m R$. Then $l_{1} \sigma^{-1} \varphi(m x)=\sigma^{-1} \varphi(m x)=\eta_{2} \beta l_{2}(m x)=\eta_{2} \beta(m x)$. Hence $l_{1} \sigma^{-1} \varphi(m x)=$ $\eta_{2} \beta(m x)=\beta(m x)+\operatorname{Ker}(\alpha)$, so $l_{1} \sigma^{-1} \varphi(m x)=\beta(m x)+\operatorname{Ker}(\alpha)$. Since α is an R-epimorphism, $\varphi(m x)=\alpha(a)$ for some $a \in A$. Thus $l_{1} \sigma^{-1} \varphi(m x)=l_{1} \sigma^{-1} \alpha(a)=\sigma^{-1} \alpha(a)=$ $\eta_{1}(a)=a+\operatorname{Ker}(\boldsymbol{\alpha})$. It follows that $\beta(m x)+\operatorname{Ker}(\boldsymbol{\alpha})=a+\operatorname{Ker}(\boldsymbol{\alpha})$. Then $\beta(m x)-a \in \operatorname{Ker}(\boldsymbol{\alpha})$. Hence $\alpha(\beta(m x)-a)=0$, so $\alpha \beta(m x)=\alpha(a)=\varphi(m x)$. Thus $\alpha \beta(m x)=\varphi(m x)$. This shows that β lifts φ.

3.2 Small Simple Quasi-injective Modules

A right R-modules M is called small simple quasi-injective if it is small simple M-injective. Write $S=E n d_{R}(M)$ denoted the endomorphism ring of M. In this section, we present the results of characterizations and properties of small simple quasi-injective modules.
3.2.1 Lemma. Let M be a right R-module and $S=\operatorname{End}_{R}(M)$. Then the following conditions are equivalent :
(1) M is small simple quasi-injective.
(2) If $m R$ is small and simple, $m \in M$, then $l_{M} r_{R}(m)=S m$.
(3) If $m R$ is small and simple and $r_{R}(m) \subset r_{R}(n), m, n \in M$, then $S n \subset S m$.
(4) If $m R$ is small and simple, $m \in M$, then $l_{M}\left(r_{R}(m) \cap a R\right)=l_{M}(a)+S m$ for all $a \in R$.
(5) If $m R$ is small and simple, $m \in M$, and $\gamma: m R \rightarrow M$ is an R-homomorphism, then $\gamma(m) \in S m$.

Proof. (1) $\Rightarrow(2)$ Let $m R$ be small and simple and let $m \in M$. To show that $l_{M} r_{R}(m)=S m$. (\supset) Let $\varphi(m) \in S m$. To show that $\varphi(m) \in l_{M} r_{R}(m)$, i.e. $\varphi(m) r=0$, for every $r \in r_{R}(m)$.

Let $r \in r_{R}(m)$. Then $m r=0$. Hence $\varphi(m) r=\varphi(m r)=\varphi(0)=0 .(\subset)$ Let $x \in l_{M} r_{R}(m)$. To show that $x \in S m$. Define $\varphi: m R \rightarrow x R$ by $\varphi(m r)=x r$ for every $r \in R$. Let $m r_{1}, m r_{2} \in m R$ such that $m r_{1}=m r_{2}$. Then $m r_{1}-m r_{2}=0$, hence $m\left(r_{1}-r_{2}\right)=0$, so $r_{1}-r_{2} \in r_{R}(m)$. Since $x \in l_{M} r_{R}(m), x\left(r_{1}-r_{2}\right)=0$. It follows that $x r_{1}=x r_{2}$. Thus $\varphi\left(m r_{1}\right)=x r_{1}=x r_{2}=\varphi\left(m r_{2}\right)$. This shows that φ is well-defined. Let $m r_{1}, m r_{2} \in m R$ and $r \in R$. Then $\varphi\left(m r_{1} r+m r_{2}\right)=\varphi\left(m\left(r_{1} r+r_{2}\right)\right)=x\left(r_{1} r+r_{2}\right)=x r_{1} r+x r_{2}=$ $\left(x r_{1}\right) r+x r_{2}=\varphi\left(m r_{1}\right) r+\varphi\left(m r_{2}\right)$. This shows that φ is an R-homomorphism. Since M is small simple quasi-injective, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow M$ such that $l_{1} \varphi=\hat{\varphi} l_{2}$ where $l_{1}: x R \rightarrow M$ and $l_{2}: m R \rightarrow M$ are the inclusion maps. Then $x=x \cdot 1=\varphi(m \cdot 1)=\varphi(m)=l_{1} \varphi(m)=\hat{\varphi} l_{2}(m)=\hat{\varphi}(m) \in S m$.
(2) $\Rightarrow(1)$ To show that M is small simple quasi-injective. Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow M$ be an R-homomorphism. Let $r \in r_{R}(m)$. Then $m r=0$. Hence $\varphi(m) r=\varphi(m r)=\varphi(0)=0$. This shows that $\varphi(m) \in l_{M} r_{R}(m)$. Then by assumption, we have $\varphi(m) \in S m$. Hence $\varphi(m)=\hat{\varphi}(m)$ for some $\hat{\varphi} \in S$. Thus $\varphi(m)=\hat{\varphi}(m)=\hat{\varphi} l(m)$. This shows that $\varphi=\hat{\varphi}_{l}$.
(2) \Rightarrow (3) Let $m R$ be small and simple and let $r_{R}(m) \subset r_{R}(n), m, n \in M$. To show that $S n \subset S m$. Let $x \in l_{M} r_{R}(n)$. To show that $x \in l_{M} r_{R}(m)$. Let $a \in r_{R}(m)$. Since $r_{R}(m) \subset r_{R}(n), a \in r_{R}(n)$, so $x a=0$. Thus $x \in l_{M} r_{R}(m)$. This shows that $l_{M} r_{R}(n) \subset l_{M} r_{R}(m)$. Let $\varphi(n) \in S n$. To show that $\varphi(n) \in l_{M} r_{R}(n)$, i.e. $\varphi(n) r=0$, for every $r \in r_{R}(n)$. Let $r \in r_{R}(n)$. Then $n r=0$. Hence $\varphi(n) r=\varphi(n r)=\varphi(0)=0$. This shows that $S n \subset l_{M} r_{R}(n)$. It follows that $S n \subset l_{M} r_{R}(n) \subset l_{M} r_{R}(m)=S m$.
(3) \Rightarrow (4) Let $m R$ be small and simple, $m \in M$ and let $a \in R$. To show that $l_{M}\left(r_{R}(m) \cap a R\right)=l_{M}(a)+S m .(\subset)$ Let $x \in l_{M}\left(r_{R}(m) \cap a R\right)$. To show that $x \in l_{M}(a)+S m$. Since $x \in l_{M}\left(r_{R}(m) \cap a R\right), x\left(r_{R}(m) \cap a R\right)=0$. Hence xar $=0$ every $r \in R$
such that $m a r=0$, so $r \in r_{R}(m a)$. Let $b \in r_{R}(m a)$. Then $m a b=0$. Hence $x a b=0$, so $b \in r_{R}(x a)$. This shows that $r_{R}(m a) \subset r_{R}(x a)$. Since $m a r=0$, we show two cases, i.e. $m a=0$ and $m a \neq 0$. If $m a=0$, then mar $=0$ every $r \in R$. Hence $r \in r_{R}(m a)$, so $r \in r_{R}(x a)$. Thus xar $=0$ every $r \in R$. Since we have $1 \in R, x a=x a \cdot 1=0$. Therefore $x a=0$. It follows that $x \in l_{M}(a) \subset l_{M}(a)+S m$. If $m a \neq 0$, then $m a R \neq 0$. We have $a R \subset R_{R}$, so $m a R \subset m R$. Since $m R$ is simple, $m a R=m R$. This shows that $m a R$ is a small and simple submodule of M. By (3), we have $S x a \subset S m a$. Then $x a=1_{M}(x a) \in S x a \subset S m a$. Hence $x a \in S m a$, so $x a=\varphi(m a)$ for some $\varphi \in S$. Thus $x a-\varphi(m a)=0$. Therefore $(x-\varphi(m)) a=0$. It follows that $x-\varphi(m) \in l_{M}(a)$. Then $x=(x-\varphi(m))+\varphi(m) \in l_{M}(a)+S m .(\supset)$ Let $x \in l_{M}(a)+S m$. To show that $x \in l_{M}\left(r_{R}(m) \cap a R\right)$, i.e. xay $=0$, for every $y \in R$ such that may $=0$. Since $x \in l_{M}(a)+S m, x=v+\varphi(m)$ for some $v \in l_{M}(a), \varphi \in S$. Then $x a=v a+\varphi(m) a=0+\varphi(m) a$, hence $x a=\varphi(m) a$. Let $y \in R$ such that may $=0$. Thus $x a y=\varphi(m) a y=\varphi($ may $)=\varphi(0)=0$.
(4) \Rightarrow (2) Let $m R$ be a small and simple submodule of M. We have $1_{R} \in R$. Put $a=1_{R}$, then by (4), $l_{M} r_{R}(m)=S m$.
(3) \Rightarrow (5) Let $m R$ be a small and simple submodule of M and let $\gamma: m R \rightarrow M$ be an R-homomorphism. To show that $\gamma(m) \in S m$. Let $x \in r_{R}(m)$. Then $m x=0$. Hence $\gamma(m) x=\gamma(m x)=\gamma(0)=0$, so $x \in r_{R}(\gamma(m))$. This shows that $r_{R}(m) \subset r_{R}(\gamma(m))$. Then by (3), we have $S \gamma(m) \subset S m$. It follows that $\gamma(m)=1_{M} \gamma(m) \in S \gamma(m) \subset S m$.
(5) \Rightarrow (1) To show that M is small simple quasi-injective. Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow M$ be an R-homomorphism. Then by (5), $\varphi(m) \in S m$. Hence $\varphi(m)=\hat{\varphi}(m)$ for some $\hat{\varphi} \in S$. This shows that $\hat{\varphi}$ is an extension of φ.
3.2.2 Lemma. Let M be a small simple quasi-injective module and $S=\operatorname{End}_{R}(M)$. If $m \in M$ and $\alpha \in S$ with $\alpha(M)$ is small and simple, then

$$
l_{S}(\operatorname{Ker}(\alpha) \cap m R)=l_{S}(m)+S \alpha
$$

Proof. ($\supset)$ Let $x \in l_{S}(m)+S \alpha$. To show that $x \in l_{S}(\operatorname{Ker}(\alpha) \cap m R)$, i.e. $x m y=0$, for every $y \in R$ such that $\alpha(m y)=0$. Since $x \in l_{S}(m)+S \alpha, x=v+\varphi \alpha$ for some $v \in l_{S}(m), \varphi \in S$. Then $x m=v(m)+\varphi \alpha(m)=0+\varphi \alpha(m)$. Hence $x m=\varphi \alpha(m)$. Let $y \in R$ such that $\alpha(m y)=0$. Thus $x m y=\varphi \alpha(m) y=\varphi \alpha(m y)=\varphi(\alpha(m y))=\varphi(0)=0$.
(\subset) Let $\beta \in l_{S}(\operatorname{Ker}(\alpha) \cap m R)$. To show that $\beta \in l_{S}(m)+S \alpha$. Let $b \in r_{R}(\alpha(m))$. Then $\alpha(m) b=\alpha(m b)=0$. Hence $m b \in \operatorname{Ker}(\alpha) \cap m R$, so $\beta(m b)=0$. Thus $b \in r_{R}(\beta(m))$. This shows that $r_{R}(\alpha(m)) \subset r_{R}(\beta(m))$. Then by Proposition 2.3.2, $l_{M} r_{R}(\beta(m)) \subset l_{M} r_{R}(\alpha(m))$. If $\alpha(m)=0$, then $\alpha(m) r=0$ every $r \in R$. Then $r \in r_{R}(\alpha(m))$. Hence $r \in r_{R}(\beta(m))$, so $\beta(m) r=0$ every $r \in R$. We have $1 \in R$, so $\beta(m)=\beta(m) \cdot 1=0$. Thus $\beta(m)=0$. Therefore $\beta \in l_{S}(m)$. It follows that $\beta \in l_{S}(m) \subset l_{S}(m)+S \alpha$. If $\alpha(m) \neq 0$, then $\alpha(m) R \neq 0$. Since α is an R-homomorphism, $\alpha(m) R=\alpha(m R) \subset \alpha(M)$. Since $\alpha(M)$ is simple in M and $\alpha(m) R \neq 0, \alpha(m) R=\alpha(M)$. This shows that $\alpha(m) R$ is a small and simple submodule of M. Then by Lemma 3.2.1, we have $l_{M} r_{R}(\alpha(m))=S \alpha(m)$. Let $f \beta(m) \in S \beta(m)$. To show that $f \beta(m) \in\left(l_{M} r_{R}(\beta(m))\right.$, i.e. $f \beta(m) r=0$, for every $r \in r_{R}(\beta(m))$. Let $r \in r_{R}(\beta(m))$. Then $\beta(m) r=\beta(m r)=0$. Hence $f \beta(m) r=f \beta(m r)=$ $f(\beta(m r))=f(0)=0$. This shows that $S \beta(m) \subset l_{M} r_{R}(\beta(m))$. Then $S \beta(m) \subset l_{M} r_{R}(\beta(m)) \subset$ $l_{M} r_{R}(\alpha(m))=S \alpha(m)$. Hence $S \beta(m) \subset S \alpha(m)$, so $\beta(m)=1_{M} \beta(m) \in S \beta(m) \subset S \alpha(m)$. Thus $\beta(m) \in S \alpha(m)$. Therefore $\beta(m)=\gamma \alpha(m)$ for some $\gamma \in S$. It follows that $\beta(m)-\gamma \alpha(m)=0$. Then $(\beta-\gamma \alpha)(m)=0$. Hence $\beta-\gamma \alpha \in l_{S}(m)$. Thus $\beta=(\beta-\gamma \alpha)+\gamma \alpha \in l_{S}(m)+S \alpha$.

Following [9], a right R-module M is called a principal self-generator if every element $m \in M$ has the form $m=\gamma\left(m_{1}\right)$ for some $\gamma: M \rightarrow m R$.
3.2.3 Proposition. Let M be a principal module which is a principal self-generator and let $S=\operatorname{End}_{R}(M)$. Then the following conditions are equivalent :
(1) M is small simple quasi-injective.
(2) $l_{S}(\operatorname{Ker}(\alpha) \cap m R)=l_{S}(m)+S \alpha$ for all $m \in M$ and $\alpha \in S$ with $\alpha(M)$ is small and simple in M.
(3) $l_{S}(\operatorname{Ker}(\alpha))=S \alpha$ for all $\alpha \in S$ with $\alpha(M)$ is small and simple in M.
(4) $\operatorname{Ker}(\alpha) \subset \operatorname{Ker}(\beta)$, where $\alpha, \beta \in S$ with $\alpha(M)$ is small and simple in M, implies $S \beta \subset S \alpha$.

Proof. (1) $\Rightarrow(2)$ By lemma 3.2.2.
(2) \Rightarrow (3) Write $M=m_{0} R$ for some $m_{0} \in M$. Put $m=m_{0}$ in (2). Then $l_{S}\left(\operatorname{Ker}(\alpha) \cap m_{0} R\right)=l_{S}\left(m_{0}\right)+S \alpha$. We have $\operatorname{Ker}(\alpha) \cap m_{0} R=\operatorname{Ker}(\alpha)$ and $l_{S}\left(m_{0}\right)=0$, so $l_{S}(\operatorname{Ker}(\alpha))=S \alpha$.
(3) \Rightarrow (4) Let $\alpha, \beta \in S$ with $\alpha(M)$ is small and simple in M and $\operatorname{Ker}(\alpha) \subset \operatorname{Ker}(\beta)$. To show that $S \beta \subset S \alpha$. Since $\operatorname{Ker}(\alpha) \subset \operatorname{Ker}(\beta)$, by Proposition 2.3.2, $l_{S} \operatorname{Ker}(\beta) \subset l_{S} \operatorname{Ker}(\alpha)$. Let $\varphi \beta \in S \beta$. To show that $\varphi \beta \in l_{S} \operatorname{Ker}(\beta)$, i.e. $\varphi \beta(x)=0$, for every $x \in \operatorname{Ker}(\beta)$. Let $x \in \operatorname{Ker}(\beta)$. Then $\beta(x)=0$, hence $\varphi \beta(x)=\varphi(\beta(x))=\varphi(0)=0$. This shows that $S \beta \subset l_{S} \operatorname{Ker}(\beta)$. Thus by (3), $S \beta \subset l_{S} \operatorname{Ker}(\beta) \subset l_{S} \operatorname{Ker}(\alpha)=S \alpha$.

$$
\text { (4) } \Rightarrow \text { (1) Let } m R \text { be a small and simple submodule of } M \text { and let } \varphi: m R \rightarrow M
$$ be an R-homomorphism. Since M is a principal self-generator module, by [9] there exists $\beta \in S$ such that $\beta\left(m_{1}\right)=m$ for some $\beta: M \rightarrow m R$. Then $\beta\left(m_{1} R\right)=\beta\left(m_{1}\right) R=m R$. Since $\beta(M) \subset m R$ and we have $m_{1} R \subset M, \beta\left(m_{1} R\right) \subset \beta(M)$. Then $m R=\beta\left(m_{1} R\right) \subset \beta(M)$. It follows that $\beta(M)=m R$. This shows that $\beta(M)$ is a small and simple submodule of M. Let $x \in \operatorname{Ker}(\beta)$.

Then $\varphi \beta(x)=\varphi(\beta(x))=\varphi(0)=0$. Hence $x \in \operatorname{Ker}(\varphi \beta)$. This shows that $\operatorname{Ker}(\beta) \subset \operatorname{Ker}(\varphi \beta)$. Thus by (4), $S \varphi \beta \subset S \beta$. We have $1_{M} \in S$, so $\varphi \beta=1_{M} \varphi \beta \in S \varphi \beta \subset S \beta$. It follows that $\varphi \beta \in S \beta$. Then $\varphi \beta=\hat{\varphi} \beta$ for some $\hat{\varphi} \in S$. To show that $\varphi=\hat{\varphi} l$. Let $m x \in m R$. Then $\varphi(m x)=\varphi(m) x=\varphi\left(\beta\left(m_{1}\right)\right) x=\varphi\left(\beta\left(m_{1}\right) x\right)=\varphi \beta\left(m_{1} x\right)=\hat{\varphi} \beta\left(m_{1} x\right)=\hat{\varphi} \beta\left(m_{1}\right) x=$ $\hat{\varphi}(m) x=\hat{\varphi}(m x)=\hat{\varphi} l(m x)$.
3.2.4 Theorem. Let M be a small simple quasi-injective module, $m, n \in M$ and $m R$ is small and simple,
(1) If $m R$ embeds in $n R$, then $S m$ is an image of $S n$.
(2) If $n R$ is an image of $m R$, then Sn embeds in $S m$.
(3) If $m R \cong n R$, then $S m \cong S n$.

Proof. (1) Let $f: m R \rightarrow n R$ be an R-monomorphism. Since M is small simple quasi-injective, there exists an R-homomorphism $\hat{f}: M \rightarrow M$ such that $l_{2} f=\hat{f} l_{1}$ where $l_{1}: m R \rightarrow M$ and $l_{2}: n R \rightarrow M$ are the inclusion maps. Define $\sigma: S n \rightarrow S m$ by $\sigma(\alpha(n))=\alpha \hat{f}(m)$ for every $\alpha \in S$. Let $0=\alpha(n) \in S n$. Since $f(m R) \subset n R, \alpha f(m R) \subset \alpha(n R)$, so $\alpha f(m)=\alpha f(m \cdot 1) \in \alpha f(m R) \subset$ $\alpha(n R)=\alpha(n) R=0 \cdot R=0$. Then $\sigma(\alpha(n))=\alpha \hat{f}(m)=\alpha f(m)=0$. This shows that σ is well-defined. Let $\alpha_{1}(n), \alpha_{2}(n) \in S n$ and $s \in S$. Then $\sigma\left(s \alpha_{1}(n)+\alpha_{2}(n)\right)=\sigma\left(\left(s \alpha_{1}+\alpha_{2}\right) n\right)=$ $\left(s \alpha_{1}+\alpha_{2}\right) \hat{f}(m)=s \alpha_{1} \hat{f}(m)+\alpha_{2} \hat{f}(m)=s \sigma\left(\alpha_{1}(n)\right)+\sigma\left(\alpha_{2}(n)\right)$. This shows that σ is an S-homomorphism. If $f=0$, then $f(m x)=0$ for every $m x \in m R$. Hence f is not an R-monomorphism, a contradiction. Thus $f \neq 0$. We have $0 \neq \hat{f}(m R)=f(m R) \subset M$. Let $m x \in m R$. Then $\hat{f}(m x) \in \hat{f}(m R)$. Hence $\hat{f}(m x)=f(m x) \in f(m R)=f(m) R$, so $\hat{f}(m x) \in f(m) R$. This shows that $\hat{f}(m R) \subset f(m) R$. Thus $\hat{f}(m R)=f(m R)=f(m) R$. It follows that $\hat{f}(m R)=f(m) R$. Thus by Definition 2.4.3, $f(m) R$ is simple in M. By Proposition 2.2.4, $f(m) R=\hat{f}(m) R \ll M$. Therefore $f(m) R$ is small and simple in M. Let $x \in r_{R}(f(m))$. Then $f(m x)=f(m) x=0$. Hence $m x \in \operatorname{Ker}(f)$. Since f is an R-monomorphism, $m x=0$, so $x \in r_{R}(m)$. This shows that
$r_{R}(f(m)) \subset r_{R}(m)$. By lemma 3.2.1, $S m \subset S f(m)$. We have $1_{M} \in S$, so $m=1_{M}(m) \in \operatorname{Sm} \subset S f(m)$ so $m \in S f(m)$. Then $m=\alpha f(m)$ for some $\alpha \in S$. To show that σ is an S-epimorphism. Since $m=\alpha f(m) \in S f(m)$ and $\alpha f(m)=\alpha \hat{f}(m)=\sigma(\alpha(n)) \in \sigma(S n), m \in S f(m) \subset \sigma(S n)$, so $S m \subset \sigma(S n)$. It follows that $S m=\sigma(S n)$.
(2) Let $f: m R \rightarrow n R$ be an R-epimorphism. We have $n \cdot 1 \in n R$, so $n=n \cdot 1=f(m y)$ for some $y \in R$. Since M is small simple quasi-injective, there exists an R-homomorphism $\hat{f}: M \rightarrow M$ such that $l_{2} f=\hat{f} l_{1}$ where $l_{1}: m R \rightarrow M$ and $l_{2}: n R \rightarrow M$ are the inclusion maps. Define $\sigma: S n \rightarrow S m$ by $\sigma(\alpha(n))=\alpha \hat{f}(m y)$ for every $\alpha \in S$. Let $0=\alpha(n) \in S n$. Then $\sigma(\alpha(n))=\alpha \hat{f}(m y)=\alpha f(m y)=\alpha(n)=0$. This shows that σ is well-defined. Let $\alpha_{1}(n), \alpha_{2}(n) \in S n$ and $s \in S$. Then $\sigma\left(s \alpha_{1}(n)+\alpha_{2}(n)\right)=\sigma\left(\left(s \alpha_{1}+\alpha_{2}\right) n\right)=$ $\left(s \alpha_{1}+\alpha_{2}\right) \hat{f}(m y)=s \alpha_{1} \hat{f}(m y)+\alpha_{2} \hat{f}(m y)=s \sigma\left(\alpha_{1}(n)\right)+\sigma\left(\alpha_{2}(n)\right)$. This shows that σ is an S-homomorphism. To show that σ is an S-monomorphism, i.e. $\operatorname{Ker}(\sigma)=\{0\}$. (\supset) It is clear. (\subset) Let $\alpha(n) \in \operatorname{Ker}(\sigma)$. Then $\sigma(\alpha(n))=0$. Hence $0=\sigma(\alpha(n))=\alpha \hat{f}(m y)=\alpha f(m y)=\alpha(n)$. It follows that $\alpha(n)=0 \in\{0\}$.
(3) It is clear by (1) and (2).
3.2.5 Proposition. Let M be a principal module which is a principal self-generator. If M is small simple quasi-injective, then $\operatorname{Soc}\left(M_{R}\right) \subset r_{M}(J(S))$.

Proof. Let $m R$ be a simple submodule of M. To show that $m R \subset r_{M}(J(S))$, i.e. $\alpha(m)=0$, for every $\alpha \in J(S)$. Let $\alpha \in J(S)$. Suppose $\alpha(m) \neq 0$. Since M is principal self-generator, $m R=\sum_{s \in I} s(M)$ for some $I \subset S$ by [17, Proposition 2.7]. Since $m R$ is simple, there exists $0 \neq s \in I \subset S$ such that $s(M)=m R$. Thus $\alpha s \neq 0$. To show that $\operatorname{Ker}(s)=\operatorname{Ker}(\alpha s)$. Let $x \in \operatorname{Ker}(s)$. Then $s(x)=0$. Hence $\alpha s(x)=\alpha(s(x))=\alpha(0)=0$. Thus $x \in \operatorname{Ker}(\alpha s)$. This shows that $\operatorname{Ker}(s) \subset \operatorname{Ker}(\alpha s)$. By Proposition 2.4.4, we have $M / \operatorname{Ker}(s) \cong s(M)$, so $M / \operatorname{Ker}(s)$ is simple in M. Hence by Proposition 2.4.5, $\operatorname{Ker}(s)$ is maximal in M. Thus $\operatorname{Ker}(s)=\operatorname{Ker}(\alpha s)$.

Define $f: s(M) \rightarrow \alpha s(M)$ by $f(s(m))=\alpha s(m)$ for every $m \in M$. Let $0=s(m) \in s(M)$. Then $f(s(m))=\alpha s(m)=\alpha(s(m))=\alpha(0)=0$. This shows that f is well-defined. Let $s\left(m_{1}\right), s\left(m_{2}\right) \in s(M)$ and $r \in R$. Then $f\left(s\left(m_{1}\right) r+s\left(m_{2}\right)\right)=f\left(s\left(m_{1} r\right)+s\left(m_{2}\right)\right)=$ $f\left(s\left(m_{1} r+m_{2}\right)\right)=\alpha s\left(m_{1} r+m_{2}\right)=\alpha s\left(m_{1} r\right)+\alpha s\left(m_{2}\right)=\alpha s\left(m_{1}\right) r+\alpha s\left(m_{2}\right)=$ $f\left(s\left(m_{1}\right)\right) r+f\left(s\left(m_{2}\right)\right)$. This shows that f is an R-homomorphism. Let $\alpha(s(m)) \in \alpha s(M)$. We see that f is an R-epimorphism because every $\alpha(s(m)) \in \alpha s(M)$, we have $s(m) \in s(M)$ such that $f(s(m))=\alpha s(m)$. If $0 \neq \operatorname{Ker}(f)$, then $0 \neq \operatorname{Ker}(f) \subset s(M)$. Since $s(M)$ is simple, $\operatorname{Ker}(f)=s(M)$, a contradiction. Hence $0=\operatorname{Ker}(f)$, so f is an R-monomorphism. Thus f is an R-isomorphism, $s(M) \cong \alpha s(M)$. Therefore $\alpha s(M)$ is simple in M. Since M is a principal module, by Proposition 2.9.5, $J(M) \ll M$. By Proposition 2.10.4, $J(S) M \subset J(M)$. Hence $J(S) M \subset J(M) \ll M$, so by Proposition 2.2.3, $J(S) M \ll M$. Since $\alpha \in J(S)$ and $J(S) \subset{ }_{S} S_{S}$, $J(S) S \subset J(S)$, so $\alpha s \in J(S) S \subset J(S)$. Then $\alpha s \in J(S)$. Hence $\alpha s(M) \subset J(S) M \ll M$, so $\alpha s(M) \ll M$. Thus $\alpha s(M)$ is a small and simple submodule of M. Since M is small simple quasi-injective, by Proposition 3.2.3, we have $l_{S}(\operatorname{Ker}(\alpha s))=S \alpha_{s}$, so $l_{S}(\operatorname{Ker}(s))=S \alpha s$. We have $s \in l_{S}(\operatorname{Ker}(s))$, so $s \in S \alpha s$. It follows that $s=\beta \alpha_{s}$ for some $\beta \in S$. Then $s-\beta \alpha s=0$. Hence $(1-\beta \alpha) s=0$, so by Proposition 2.10.3, $(1-\beta \alpha)$ has a right inverse. Thus $(1-\beta \alpha)^{-1} \cdot(1-\beta \alpha) s=(1-\beta \alpha)^{-1} \cdot 0$. Therefore $s=(1-\beta \alpha)^{-1} \cdot 0=0$, a contradiction.

Let M be a right R-module with $S=\operatorname{End}_{R}(M)$. Following [6], we write a symbol delta is denoted by $\Delta=\left\{s \in S \mid \operatorname{Ker}(s) \subset^{e} M\right\}$. It is known that Δ is an ideal of S [6, Lemma 3.2].
3.2.6 Proposition. Let M be a principal module which is a principal self-generator and $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$. If M is small simple quasi-injective, then $J(S) \subset \Delta$.

Proof. Let $s \in J(S)$. To show that $s \in \Delta$, i.e. $\operatorname{Ker}(s) \subset^{e} M$. If $\operatorname{Ker}(s) \not \subset^{e} M$, then there exists a non-zero submodule N of M such that $\operatorname{Ker}(s) \cap N=0$. Since $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$, by Proposition 2.9.6,
there exists a simple submodule $m R$ of M such that $m R \subset \operatorname{Soc}\left(M_{R}\right) \cap N$. Since M is principal self-generator and $m R$ is simple, $m R=t(M)$ for some $0 \neq t \in S$ by [17, Proposition 2.9]. By the similar proof of Proposition 3.2.5, we have $\operatorname{Ker}(t)=\operatorname{Ker}(s t)$, so $t(M) \cong \operatorname{st}(M)$ and $\operatorname{st}(M) \ll M$. Thus $\operatorname{st}(M)$ is a small and simple submodule of M. Since M is small simple quasi-injective, by Proposition 3.2.3, we have $l_{S}(\operatorname{Ker}(s t))=S s t$, so $l_{S}(\operatorname{Ker}(t))=S s t$. We have $t \in l_{S}(\operatorname{Ker}(t))$, so $t \in S s t$. Therefore $t=\alpha s t$ for some $\alpha \in S$. Then $t-\alpha s t=0$. Hence $(1-\alpha s) t=0$, so by Proposition 2.10.3, $(1-\alpha s)$ has a right inverse. Thus $(1-\alpha s)^{-1} \cdot(1-\alpha s) t=(1-\alpha s)^{-1} \cdot 0$. It follows that $t=(1-\alpha s)^{-1} \cdot 0=0$, a contradiction.
3.2.7 Proposition. Let M be a principal nonsingular module which is a principal self-generator and $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$. If M is small simple quasi-injective, then $J(S)=0$.

Proof. By Proposition 3.2.6, we have $J(S) \subset \Delta$, we show that $\Delta=0$. Let $s \in \Delta$. To show that $s=0$. Let $m \in M$. Define $\varphi: R \rightarrow M$ by $\varphi(r)=m r$ for every $r \in R$. Let $0=r \in R$. Then $\varphi(r)=m r=m \cdot 0=0$. This shows that φ is well-defined. Let $r_{1}, r_{2} \in R$ and $r \in R$. Then $\varphi\left(r_{1} r+r_{2}\right)=m\left(r_{1} r+r_{2}\right)=m r_{1} r+m r_{2}=\left(m r_{1}\right) r+m r_{2}=\varphi\left(r_{1}\right) r+\varphi\left(r_{2}\right)$. This shows that φ is an R-homomorphism. We have $r_{R}(s(m))=\{r \in R \mid s(m) r=0\}$

$$
\begin{aligned}
& =\{r \in R \mid s(m r)=0\} \\
& =\{r \in R \mid m r \in \operatorname{Ker}(s)\} \\
& =\{r \in R \mid \varphi(r) \in \operatorname{Ker}(s)\} \\
& =\varphi^{-1}(\operatorname{Ker}(s)) .
\end{aligned}
$$

Since $s \in \Delta, \operatorname{Ker}(s) \subset^{e} M$. Then by Proposition 2.3.3, we have $\varphi^{-1}(\operatorname{Ker}(s)) \subset^{e} R$. Hence $r_{R}(s(m))=\varphi^{-1}(\operatorname{Ker}(s)) \subset^{e} R$, so $r_{R}(s(m)) \subset^{e} R$. Thus by Definition 2.3.5, $s(m)$ is an element of the singular submodule $Z(M)$ of M. Since M is a nonsingular module, by Definition 2.3.5, $Z(M)=0$, so $s(m)=0$. As this is true for all $m \in M$, we have $s=0$. Therefore $\Delta=0$ as required.

Lists of References

[1] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules," Graduate Texts in Math. No. 13 ,Springer-verlag, New York, 1992.
[2] V. Camillo, "Commutative Rings whose Principal Ideals are Annihilators," Portugal Math., Vol 46, 1989. pp 33-37.
[3] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, "Extending Modules," Pitman, London, 1994.
[4] A. Facchini, "Module Theory," Birkhauser Verlag, Basel, Boston, Berlin, 1998.
[5] T.Y. Lam, "A First Course in Noncommutative Rings," Graduate Texts in Mathematics Vol 131, Springer-Verlag, New York, 1991.
[6] S. H. Mohamed and B. J. Muller, "Continuous and Discrete Modules," London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.
[7] W. K. Nicholson and M. F. Yousif, "Principally Injective Rings," J. Algebra, Vol 174, 1995. pp 77-93.
[8] W. K. Nicholson and M. F. Yousif, "Mininjective Rings," J. Algebra, Vol 187, 1997. pp 548-578.
[9] W. K. Nicholson, J. K. Park and M. F. Yousif, "Principally Quasi-injective Modules," Comm. Algebra, 27:4(1999). pp 1683-1693.
[10] N. V. Sanh, K. P. Shum, S. Dhompongsa and S.Wongwai, "On Quasi-principally Injective Modules," Algebra Coll.6: 3, 1999. pp 269-276.
[11] L. Shen and J. Shen, "Small Injective Rings," arXiv: Math., RA/0505445 vol 1, 2005.
[12] L.V. Thuyet, and T.C.Quynh, "On Small Injective Rings, Simple-injective and QuasiFrobenius Rings," Acta Math. Univ. Comenianae, Vol 78(2), 2009. pp 161-172.
[13] R. Wisbauer, "Foundations of Module and Ring Theory," Gordon and Breach Science Publisher, 1991.
[14] P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul, "Basic Abstract Algebra," The Press Syndicate of the University of Cambridge, second edition, 1995.

Lists of References (Continued)

[15] B. Hartley and T. O. Hawkes, "Ring, Modules and Linear Algebra," University Press, Cambridge, 1983.
[16] S. Wongwai, "On the Endomorphism Ring of a Semi-injective Module," Acta Math.Univ. Comenianae, Vol 71, 2002. pp 27-33.
[17] S. Wongwai, "Almost Quasi-mininjective Modules," Chamjuri Journal of Mathematics, Vol 2, 2010, no. 1. pp 73-79.
[18] S. Wongwai, "Small Principally Quasi-injective Modules," Int. J. Contemp. Math. Sciences, Vol 6, 2011, no. 11. pp 527-534.
[19] S. Wongwai, "Quasi-small P-injective Modules," Journal of Science and Technology RMUTT, Vol 1, 2011. no. 1. pp 59-65.
[20] A. Sa-nguannam and S. Wongwai, "Small Simple Quasi-injective Modules," Proceeding of the $\mathbf{1 7}^{\text {th }}$ Annual Meeting in Mathematics (AMM2012), April 26-27, 2012, Bangkok, Thailand. pp 217-223.

Appendix

Conference Proceeding
Paper Title "Small Simple Quasi-injective Modules"
The $17^{\text {th }}$ Annual Meeting in Mathematics (AMM2012).
April 26-27, 2012.
At The Twin Tower Hotel, Pathumwan,
Bangkok, Thailand.
By Department of Mathematics, Faculty of Science,
Mahidol University.

Proceedings of the AMM 2012

The $17^{\text {th }}$ Annual Meeting in Mathematics

 การประชุมวิชาการทางคณิตศาสตร์ ครั้งที่ 17

 การประชุมวิชาการทางคณิตศาสตร์ ครั้งที่ 17 ประจำปี 2555

 ประจำปี 2555}
$26-27$ เมษายน พ.ศ. 2555
โรงแรมเดอะทวิน ทาวเวอร์
88 ก.รองเมือง เขตปทูมวัน กรุงเทพฯ

โดยการสนับสนุนจาก

ศูนย์ความเป็นเลิศด้านคณิตศาสตร์ สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี

Small Simple Quasi-injective Modules

A. Sanguannam and S. Wongwai
Department of Mathomatics, Faculty of Science and Technology
Rajamangaln University of Technology Thanyaburi, Pathumthani 12110, THAlLAND
ogilbert5700yahoo.com, usarun@hotmail.com

Abstract

Let M be a right R-module. A right R-module N is called mall nimple M-injective if, every R-homomorphisim from a small and simple submodnle of M to N can be extended to an R-homomorphism from M to N. In this paper, we give some characterizstions and properties of samall simple quasi-injective modules,

Keywords : small principally qussi-injective modules, small simple quasi-injective modules; endomorphism rings.
2000 Mathematics Subject Classiffeation : 16D50; 16D70; 16D80.

1. Introduction

Let R bea ring. A right R-module M is called minimectiof 88 if, for each simple right ideal K of R, every R-homomarphistu $\gamma: \hbar \rightarrow M$ extends to R; equivelently, if $\gamma=m$. is left multiplication by some eloment m of M. Following [9], a right R-module M is called principolly gaasi-injective module if every R-homomorphism from a principal submodule of M to M can be extended to sm endomorphism of M. In [15], S. Wongwai, introduced the definition of small principally quasiinjective modules, a right R-tmodule N is called small principolly M-injective (or $S P-M$-injective) if, every R-hotnomorphism from a sunall and principal submodule of M to N can be extended to an R-homomorphism fromi M to N. A right R module M is called small principally quasi-injective (briefly, $S P Q$-injective) if it is $S P-M$-injective. In this note we introduce the definition of small simple quasiinjective modules and give some characterizations and properties. Some results on principally quasi-injective modules $[9]$ are extended to these modules.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R-modules. For right R-modules M and N, $\operatorname{Hom}_{R}(M, N)$ denotes the set of all R-homomorphisms from M to N and $S=E n d R(M)$ denotes the endomorphism ring of M. If X is a subset of M the right (resp. Veft) annihilator of X in R (resp. S) is denoted by $r_{n}(X)$ (resp. $l_{S}(X)$). By notations, $N \subset^{-1} M$, $N C^{=} M$, and $N \& M$ we mean that N is a direct summand, an essential submodule and a superfluous submodule of M, respectively. We denote the Jacobson radical of M by $J(M)$.

2. Small Simple Quasi-injective Modules

Following [1], s submodule K of a right R-module M is superfuows (or small) in M, abbreviated $K<M$, in case for every submodule L of $M, K+L=M$ implies $L=M$. It is clear that $k R<R R$ if sud only if $k \in J(R)$. A right R-module M is simple in case $M \neq 0$ and it has no non-trivial submodules.
Deffnition 2.1. Let M be a right R-module. A right: R-module N is called amall simgle M-injective if, every R-homomorphism from a amall and simple submodule of M to N can be extended to an R-homomorphism from M to N.
Lemma 2.2. Let M and N be right R-modules. Then N is small simple M injective if and only if for each small ard simple subrrodule mR of M,

$$
l_{N} r_{n}(m i)=\operatorname{Hom}_{R}(M, N) m .
$$

Proof. Clearly, $\operatorname{Hom}_{R}(M, N) m \in l_{N} r_{R}(m)$. Let $x \in l_{N} r_{R}(m)$. Define $\varphi: m R \rightarrow$ $x R$ by $\varphi(m r)=x$ for every $r \in \mathbb{R}$ Them φ is well-defined because $r_{R}(m) \subset r_{R}(x)$. It is clear that φ is an R-homomorphism. Since N is small simple M-injective, there exists an R-hamomorphism $\hat{\hat{p}}: M-N$ such that $\hat{\varphi_{1}}=L_{2} \varphi$, where ι_{1}; $m R \rightarrow M$ sad $\left.L_{2}:\right\lrcorner R \rightarrow N$ are the inclusion maps. Hence $x=\varphi(m)=\hat{\varphi}(m)$ $\in \operatorname{Hom}_{n}(M, N) m_{2}$

Conversely, let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow N$ be an R-homotnorphism. Then $\varphi(m) \in l_{\mathrm{N}} r_{n}(m)$ so by assumption, $\varphi(m)=\hat{\varphi}(m)$ for some $\hat{\varphi} \in \operatorname{Hom}_{\boldsymbol{r}}(M, N)$. This shows that N is small simple M-injective.
Example 2.3. Let $R=\left(\begin{array}{ll}R & E \\ 0 & \text { k }\end{array}\right)$ where F is a fied $A_{,}, M_{n}=R_{n}$ and $N_{n}=\left(\begin{array}{ll}F & F \\ 0 & 0\end{array}\right)$. Then N is smiall simple M-ingactive.
Proof. It is chear that only $X=\binom{0}{0}$ is the non-zaro small and simple submodule of M. Let $\varphi: X \rightarrow N$ be R-homomorphism Since $\binom{0}{b-1} \in X$, there exists $x_{11}, x_{12} \in$

 $\left(\begin{array}{cc}=12 & 0 \\ 0 & 0\end{array}\right)$. It is clear that $\hat{\varphi}$ is an R-homomprphism. Then $\hat{\varphi}\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)=\hat{\varphi}\left[\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right]=$ $\hat{\varphi}\left(\left(\begin{array}{cc}x i 2 & 0 \\ 0 & 0\end{array}\right)\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & =13 \\ 0 & a\end{array}\right)$. This shows that $\hat{?}$ is an extension of φ. Thus N is small simple M-injective.
Proposition 2.4. Let M be a right R-module and let $\left\{N_{\mathrm{i}} \mathrm{i} i \in I\right\}$ be a family of right R-modules. Then the direct product $\prod_{i \in I} N_{i}$ is small aimple M-injective if and only if each N_{i} in small ximple M-injective.
Proof. (\Rightarrow) Let π_{i} and φ_{2}, for each $i \in I$, be the ith projection map and the ith injection map, respectively. We now let $i \in I, m R$ a small and simple submodule of M and let $\varphi: m R \rightarrow N$, be an R-homomorphism. Then by assumption, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow N_{i}$ such that $\hat{\varphi} \hat{\varphi}=\varphi_{i} \varphi$ where $\ell: m R \rightarrow M$ is the inclusion map. Thus $\varphi=\pi_{i} \hat{\psi}$.
\Leftrightarrow Let $m R$ be a small and simple submodule of M and let $\varphi: m R \rightarrow \prod_{i \in t} N_{i}$ be an R-homomorphism. Then for esch $i \in I$, there exists an R-homomorphism
$\alpha_{i}: M \rightarrow N_{i}$ such that $\alpha_{i} L=\pi_{i} \varphi$ where $t: m R \rightarrow M$ is the inclusion map. Hence we obtain (product) $\widehat{\varphi}: M \rightarrow \prod_{i E I} N_{i}$ with $\pi_{i} \hat{\varphi}=\alpha_{i}$ and $\pi_{i} \hat{\varphi} l=\alpha_{i} \iota$ which implies $\hat{p} \hat{t}=\varphi$.
Lemma 2.5. Let $N_{i}(1 \leq i \leq n)$ be small simple M-injective modules. Then $\oplus_{\pi=1}^{n} N_{i}$ is annall aimple M-injective.
Proof. It is enough to prove the result for $n \triangleq 2$. Let $m R$ be a small and simple submodule of M and $\varphi: m R \rightarrow N_{1} \oplus N_{2}$ be ann R-homomorphism. Since N_{1} and N_{2} are small simple M-injective, there exists R-homomorphisms $\varphi_{1}: M \rightarrow N_{1}$ and $\varphi_{2}: M \rightarrow N_{2}$ such that $\varphi_{1} \ell=\pi_{1} \varphi$ and $\varphi_{22}=\pi_{2} \varphi$ where π_{1} and π_{2} are the projection maps from $N_{1} \oplus N_{2}$ to N_{1} and N_{2}, respectively, and $\iota: m R \rightarrow M$ is the inclusion map. Put $\hat{\varphi}=\iota_{1} \varphi_{1}+\iota_{2} \varphi_{2}: M \Rightarrow N_{1} \oplus N_{2}$ where ι_{1} and ι_{2} are the injection maps from N_{1} and N_{2} to $N_{1} \oplus N_{2}$ a respectively. Thus it is clear that $\vec{\varphi}$ extends φ.
Lemma 2.6. Ary divect sumpmand of a small simpde M-injective module is again hinall simple M-injective.
Proof. By delinition.
Theorem 2.7. The following conditions are eqvivalem for a projective module M :
(1) Every amall and simple submodule of M is projective.
(2) Every foctor module of a small kimple M-injective mbodule is small simple M-injective
(3) Every factor module of an injective R-module is strall stmple M-injective.

Proof. (1) \Rightarrow (2) Let N be a smah simple M-injective module, X a submodule of $N, m R$ a small and simple submodule of $A L$, and let $\varphi=m R \rightarrow N / X$ be an R-homomorphismL Then by (1), there exists an R-homomorphism $\alpha: m R \rightarrow N$ such that $\varphi=\eta \alpha$ where $\eta=N \rightarrow N / X$ is the naturnal R-epimorphism. Hence α can be extended to an R-hommorphianm $\beta: M \& N$. Then $\eta \beta$ is ar extension of φ to M.
$(2) \Rightarrow(3)$ is clear.
(3) \Rightarrow (1) Let $m R$ be a small and simple submodule of $M, \alpha=A \rightarrow B$ an R epimorphism, and let $\varphi: m R \rightarrow B$ be an R-fiomomorphism. Embed A in an injective module $E[1,18.6]$. Then $B \geq A / \operatorname{Ker}(\alpha)$ is a suhmodule of $E / K \operatorname{Ker}(\alpha)$ so by hypothesis, φ can be extended to $\hat{\psi}: M \rightarrow E / \operatorname{Ker}(\alpha)$. Since M is projective, $\hat{\varphi}$ can be lifted to $\beta: M \rightarrow E$. It is clear that $\beta(m F) \subset A$. Therefore we have lifted φ.

3. The Endomorphism Ring

A right R-module M is called smoll simple quavi-injertive if it is small simple M-injective. In this section, we give some characterizstions and properties of small simple quasi-injective modules.

Lemma 3.1. Let M be a right R-module and $S=E n d r(M)$. Then the following conditions are equivalent:
(1) M is small simple quasi-injective
(2) If $m R$ is small and simple, $m \in M$, then $l_{M} r_{n}(m)=S m$.
(3) If $m R$ is small and simple and $r_{R}(m) \subset r_{R}(n), m, n \in M$, then $S n \subset S m$.
(4) If $m R$ is small and aimple, $m \in M$, then $l_{M}\left(r_{R}(m) \cap a R\right)=l_{M}(a)+S m$ for all $a \in R$.
(5) If $m R$ is small and simple, $m \in M$, and $\gamma: m R+M$ is an R-homomorphism, then $\gamma(m) \in S m$.

Proof. (1) \Leftrightarrow (2) by Lemman 2.2.
$(2) \Rightarrow(3)$ If $r_{R}(m)<r_{n}(n)$, where $m, n \in M$ with $m R$ is small and simple,
 have $S n \subset S m$.
(3) \Rightarrow (4) Let $a \in R, m \in M$ with $m R$ is small and simple and let $x \in I_{M}\left(r_{R}(m) \cap\right.$ $a R)$. Then $x(r(m) \cap a R)=080 r(m a)$ R $r(x a)$. If $m a=0$, then $m a r=0$ for all $r \in R$ so $x a=0$. It follows that $x \in l(a) C(a)+S m$. If $m a \neq 0$, then $m a R=m R$ and so Sxa $\subset S m a b y(3)$. Thus $x a=\psi(m a), \varphi \in S$ and hence $(x-\varphi(m)) \in l_{M}(a)$. It follows that $z \in I_{M}(a)+S m$. The other inclusion is clear.
(4) \Rightarrow (2) Put $a=1_{n}$
$(3) \Rightarrow$ (5) Let $m R$ be small and simple, $m \in M$, and let $\gamma: m R \rightarrow M$ be an R-homomorphism. Then $r_{t 2}(m) \subset r_{R}(\gamma(m))$ so by (3) we have $S \gamma(m) \subset S m$. It follows that $\gamma(5 n) \in(S m$.
$(5) \Rightarrow(1)$ Let $m R$ be a smalt and simple submodnie of M and let $\varphi: m R \rightarrow M$ be an R-homotnorphism. Then by $(5), \varphi(m) /=S m$. Write $\varphi(m)=\hat{\varphi}(m)$ where $\hat{\varphi} \in S$. It is clear that $\hat{\zeta}$ is an extension of φ.

Lemma 3.2. Let M be a small simple gunsi-injectione module and $S=\operatorname{End}_{R}(M)$. If $m \in M$ and $\alpha \in S$ with $\alpha(M)$ is amall and simple, then

$$
i_{S}(K \operatorname{er}(\alpha) \cap m R)=l_{S}(m)+S \alpha .
$$

Proof. It is always the case that $t_{S}(m)+\operatorname{Sa} \subset l_{S}(\operatorname{Ker}(\alpha) \cap m R)$. Let $\bar{\beta} \in$ $l_{S}(\operatorname{Ker}(\alpha) \cap m R)$. Then $r_{R}(\alpha(m)) \subset r_{R}(\beta(m))$, so $l_{M} r_{R}(\beta(m)) \subset l_{M} r_{n}(\alpha(m))$. Case $\alpha(m)=0$ is clear. If $\alpha(m) \neq 0$, then $\alpha(m) R$ is simple and small in M, hence $S \beta(m) \subset l_{M} r_{n}(\beta(m)) \subset l_{M} r_{n}(\alpha(m))=S \alpha(m)$ by Lemma 3.1, so $\beta(m)=\gamma \alpha(m)$, $\gamma \in S$. It follows that $(\beta-\gamma \alpha) \in l_{S}(m)$, and hence $\beta \in l_{S}(m)+S \alpha$.

Following [9], a right R-module M is called a principal self-genenator if every element $m \in M$ has the form $m=\gamma\left(m_{1}\right)$ for some $\gamma: M \rightarrow m R$.

Proposition 3.3. Let M be a principal module which is a principal self-generator and let $S=\operatorname{Erd}_{R}(M)$. Then the following conditions are equivolent:
(1) M is small simple quasi-injective.
(2) $t_{S}(\operatorname{Ker}(\alpha) \cap m R)=I_{S}(m)+S \alpha$ for all $m \in M$ and $\alpha \in S$ with $\alpha\{M\rangle$ is small and simple in M.
(3) $t_{S}(\operatorname{Ker}(\alpha))=S \alpha$ for all $\alpha \in S$ with $\alpha(M f)$ is small and simple in M.
(4) $K \operatorname{er}(\alpha) \subset K e r(\beta)$, where $\alpha, \beta \in S$ with $\alpha(M)$ is amall and simple in M, impliek SB C So.

Proof. (1) $\Rightarrow(2)$ by Lemma 3.2 .
(2) \Rightarrow (3) If $M=m_{0} R_{1}$ take $m=m_{0}$ in (2),
$(3) \Rightarrow(4)$ If $K \operatorname{er}(\alpha) \subset K \operatorname{er}(\beta)$, then $l_{g}(\mathbb{K} \operatorname{er}(\beta)) \subset l_{B}(K \operatorname{er}(\alpha)$. It follows that $S \beta \subset l_{g}(\operatorname{Ker}(\beta)) \subset l_{S}(\operatorname{Ker}(\alpha)=S \alpha$.
(4) \Rightarrow (1) Let $m R$ be a small and simple submedtale of M and $\varphi: m R \rightarrow M$ be an R-homomorphism. Since M is a principal self-generntor, there exists $\beta \in S$ such that $\beta\left(m_{1}\right)=m$, so $K \operatorname{er}(\beta) \subset K$ er $(\varphi \beta)$ and $\beta(M)$ is amall and simple in M. Then by (4), $S \varphi \beta \subset S \beta$, write $\varphi \beta=\hat{p}, \hat{\varphi} \in S$. This stows that \hat{p} extends φ.

Theorem 3.4. Let M be a small simple quayi-injective madule, m, $n \in M$ and $m R$ is small and simple.
(1) If $m R$ embeds in $n R$, then $S m$ is an mage of $S n$.
(2) If $n R$ is an image of $m R$, then $S n$ embeds in $S m$.
(3) If $m R \simeq n R$, then $S m=S n$.

Proof. (1) Let $f: m R \rightarrow n R$ be an $R-$ monomorphism. Let $L_{2}: m R \rightarrow M$ and $\iota_{2}: n R \rightarrow M$ be the inclusion mups. Since M is amall simple quasi-injective, there exists an R-homomorphism $\hat{f}: M \rightarrow M$ such that $c_{2} f=\hat{f} f_{1}$. Lat $\sigma: S n \rightarrow S m$ defined by $\sigma(\alpha(n))=\alpha f(m)$ for every $\alpha \in S$. Sinee $\sigma(\alpha(n))=\alpha f(m) \in \alpha(n R), \sigma$ is well-defined. It is clear that σ is an S-pomomorphisil, Note that $f(m) R$ is simple and $f(m) R=\hat{f}(m) R<M$ by $[1$, Lemma 5.18]- Since f is monic, $r n(f(m))=$ $r n(m)$ and hence by Lemma 3.1, $S m \subset S f(m)$. Then $m \in S f(m) \subset \sigma(S n)$.
(2) By the same notations as in (1), let $f: m R \rightarrow n R$ be an R-epimorphism. Write $f(m s)=n, s \in R$. Since M is small simple quasi-injective, f can be extended to $\hat{f}: M \rightarrow M$ such that $t_{2} f=\widehat{f} t_{1}$. Define $\sigma: S n \rightarrow S m$ by $\sigma(\alpha(n))=\alpha \widehat{f}(m s)$ for every $\alpha \in S$. It is clear that σ is S-homomorphism. If $\alpha(n) \in \operatorname{Ker}(\sigma)$, then $0=$ $\sigma(\alpha(n))=\alpha \hat{f}(\pi 2 s)=\alpha f(m s)=\alpha(n)$. This shows that σ is an S-monomorphism.
(3) Follows from (1) and (2).

Proposition 3.5. Let M be e principal module which is a principal self-genenator. If M is small simple quasi-injective, then $\operatorname{Soc}\left(M_{R}\right) \subset r_{M}(J(S))$.
Proof. Let $m R$ be a simple submodule of M. Suppose $a(m) \neq 0$ for some $\alpha \in J(S)$. As M is a principal self-generator, $m R=\sum_{n \in l} s(M)$ for some $I \subset S$. Since $m R$ is
a simple, $m R=s(M)$ for some $0 \neq s \in I$. Then $\alpha s \neq 0$ and $K e r(\alpha s)=K e r(B)$. Note that, $\alpha s(M)$ is is nonzero homomorphic image of the simple $s(M)$, then $\alpha s(M)$ is simple. Since M is a principal module, $J(M) \& M$ so we have $J(S) M \subset J(M)$, it follows that $\alpha g(M)$ is a small submodule of M. Since M is small simple quasiinjective, $l_{S}(\operatorname{ker}(\alpha \gamma s))=S \alpha s$. Thus $\lg (\operatorname{ker}(s))=S \alpha s$. Write $s=\beta \alpha s$ where $\beta \in S$. Then $(1-\beta a) s=0$ and so $s=\left(1-\beta(x)^{-1} 0\right.$. It follows that $s=0$, a contradiction.

Let M bes right R-module with $S=\operatorname{End}_{R}(M)$. Following $[6]_{+}$write $\Delta=\{s \in$ $\left.S: \operatorname{ker}(s) \subset^{c} M\right]$. It is known that Δ is an ideal of $S[6$, Lemma 3.2].
Proposition 3.6. Let M be a principal module which is a principal self-generator and $\operatorname{Soc}\left(M_{R}\right) C^{\varepsilon} M$. If M is small simple quasi-injective, then $J(S) \subset \triangle$.
Proof. Let $s \in J(S)$. If $K e r(s) ;{ }^{c} M$, then $K e r(s) \cap N=0$ for some nonzero submodule N of M. Since $\operatorname{Soc}\left(M_{H}\right) \mathcal{C}^{*} M, \operatorname{Soc}\left(M_{R}\right) \cap N \neq 0$. Then there exists a simple sutmodule $m R$ of M such thist $m R \subset \operatorname{Soc}\left(M_{R}\right) \cap N$ [1, Corollary 9.10]. As M is a principal self-generatar and $m A$ is simple, $m R=t(M)$ for some $t \in S$. It follows that $K \operatorname{er}(s t)=K e r(t)$. Since $8 t(M)$ is a nonzero homomorphic image of the simple $t(M), s t(M)=t(M)$. It is clear that $s t(M) \ll M$. Then $t \in l_{g}(k e r(t))=$ $t_{S}\left(k e r(s t)=S s t\right.$. Write $t=\alpha s t$ where $\alpha \in S$. It follows that $t=(1-\alpha s)^{-1} 0$. Then $t=0$, a contradiction

Proposition 3.7. Let M be a prineipal nonsingular module which is a prinicipal self-generator and $\operatorname{Soc}\left(M_{H}\right) \mathcal{E}^{c} M$. (If M is small mimple quasi-injective, then $J(S)=0$.
Proof. Since $J(S) \in \Delta$ by Proposition 3.6, we show that $\Delta=0$. Let $B \in \triangle$ and let $m \in M$. Define $\varphi: R \rightarrow M$ by $\varphi(r)=m$ for every $r \in R$. It is clear that φ is an R-homomorphisth. Thus

$$
\begin{aligned}
& r_{n}(A(m))=\{r \in R-y(m u)=0\} \\
& =\{r \in D: \operatorname{mu} \in K \in r(s)\} \\
& =\mid r \in R: p(r) \in \operatorname{Ker}(s)\} \\
& 626 \text { = } \operatorname{p}^{-1}(\text { Keri }(8)) \text {. }
\end{aligned}
$$

It follows that $\varphi^{-1}(\operatorname{Ker}(8)) C^{\varepsilon} R[4$, Lemms $5.8(\mathrm{a})]$ so $r_{R}(B(m)) C^{\varepsilon} R$. Thus $s(m) \in Z\left(M_{H}\right)=0$ because M is nonsingular. As this is true for all $m \in M_{+}$we have $s=0$. Hence $\Delta=0$ as required.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Math.No. 13 ,Springer-verlag, New York, (1992).
[2] V. Camillo, Commutative rings whose principal ideals are anmizulators, Portugril Math., 46 (1989), 33-37.
(3) N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, ${ }^{\text {'Eztending Modules }}$, Pitman, London, (1994).
[4] A. Fsechini, Module Theory, Birkhauser Verlisg, Besel, Boston, Berlin, (1998).
[5] T.Y. Lam, A First Cowrse in Noncommatative Rings, Graduste Texts in Mathematics, Vol. 131, Springer-Verlag, New York, (1991).
[6] S. H. Mohamed and B. J. Miller, Continuous and Diserete Modules, London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, (1990).
7] W.K. Nicholson and M.F. Yousif, Primeipally injective rings, J. Algebra, 174 (1995), $77-93$.
[8] W.K. Nicholson and M.F. Yousif, Mininjentive rings, J. Algebra, 187 (1997), 548-578.
[9] W. K. Nicholson, J. K. Park and M. F. Yonsif, Principolly quasi-injective modules, Comm. Algebra, 27(4) (1999),1683-1693.
[10] N. V. Sanh, K. P. Shum, S. Dhompongas and S. Wongwai, On quasi-principally injective modules, Algebre Coll.6: 3(1999), 269 276.
(11) L. Shen and J. Shen Smill kingertwe rimgs, ar Xivz Math, RA/0505445 v. 1 (2005).
[12] L.V. Thuyet, and T.G.Quynh, On small injectioe ringe, simeple-injective and quasi-Fhobenius rings, Acts Math, Univ. Comenianae, $78(2)$ (2009), 161-172.
[13] R. Wisbsuer, Fonndotions of Module and Ring Theorlf, Gordon and Breach London, Tokyo e,8,(1991).
(14) S. Wongwni, On the endomorphism ring of a eemp-injectrue module, Acta Math. Univ. Comenisnae, $71(1) \quad(2002), 27 \quad 33$.
[15] S. Wongwai, Small principally pqensi-infective moduleb, Int: 3. Contemp. Math. Sciences, 6(11), 527-534.

Curriculum Vitae

Name-Surname	Mr. Apichart Sa-nguannam
Date of Birth	January 20, 1980
Address	50 Moo 7, Tambol Paka, Banna District, Nakornnayok 26110.
Education	1. Industrial Technology College, (1996-1999)
	King Mongkut's Institute of Technology North Bangkok.
	2. Bachelor of Engineering, (1999-2003)
	Electronics and Telecommunication Engineering.
	King Mongkut's University of Technology Thonburi.
	3. Master of Engineering, (2007-2009)
	Electronics and Telecommunication Engineering.
	Rajamangala University of Technology Thanyaburi.
Experiences Work	1. Process Engineer in Electronics Manufacturing.
	Team Precision Public Co., Ltd. (2005-2009).
	2. Senior Engineer in Integrated Circuits (ICs) Manufacturing.
	NXP Manufacturing (Thailand) Co., Ltd. (2009 - 2011).
Published Papers	1. "Analysis Ball Grid Array Defects by Using New Image Technique"
	2008 The $9^{\text {th }}$ International Conference on Signal Processing (ICSP'08) October 2008, Beijing, China. pp $785-788$.
	2. "Applied Image Processing Technique for Detection the Defects of
	Ball Grid Array"
	The $31{ }^{\text {st }}$ Electrical Engineering Conference Proceedings (EECON31).
	October 2008, Nakornnayok, Thailand. pp1073-1076.
	3. "Small Simple Quasi-injective Modules"
	The $17^{\text {th }}$ Annual Meeting in Mathematics (AMM2012).
	April 2012, Bangkok, Thailand. pp217-223.

