การวิเคราะห์สมรรถนะจากแบบจำลองของห้องเผาไหม้ เครื่องกำเนิดไอน้ำแบบท่อขด

SIMULATION ANALYSIS ON THE PERFORMANCE OF A COMBUSTION CHAMBER FOR SPIRAL – TUBE STEAM GENERATOR

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ปีการศึกษา 2562 ลิขสิทธิ์ของมหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

การวิเคราะห์สมรรถนะจากแบบจำลองของห้องเผาไหม้ เครื่องกำเนิดไอน้ำแบบท่อขด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ปีการศึกษา 2562 ลิขสิทธิ์ของมหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

หัวข้อวิทยานิพนธ์	การวิเคราะห์สมรรถนะจากแบบจำลองของห้องเผาไหม้เครื่องกำเนิดไอน้ำ				
	แบบท่อขด				
	Simulation Analysis on the Performance of a Combustion				
	Chamber for Spiral-Tube Steam Generator				
ชื่อ – นามสกุล	ว่าที่ร้อยตรีหญิงวัชรินทร์ กลับสูงเนิน				
สาขาวิชา	วิศวกรรมเครื่องกล				
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์บุณย์ฤทธิ์ ประสาทแก้ว, D.Eng.				
ปีการ์ศึกษา	2562				

คณะกรรมการสอบวิทยานิพนธ์

ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ขวัญชัย จ้อยเจริญ, ปร.ด.)

กรรมการ

ุ (ผู้ช่วยศาสตราจารย์กิติพงษ์ เจาจารึก, D.Eng.)

กรรมการ

(อาจารย์สถาพร ทองวิค, วศ.ด.)

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี อนุมัติวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

Y~__

คณบดีคณะวิศวกรรมศาสตร์

(ผู้ช่วยศาสตราจารย์ศิวกร อ่างทอง, Ph.D.) วันที่ 10 เดือน มกราคม พ.ศ. 2563

หัวข้อวิทยานิพนธ์	การวิเคราะห์สมรรถนะจากแบบจำลองของห้องเผาไหม้เครื่องกำเนิดไอน้ำ แบบท่อขด		
ชื่อ – นามสกุล	ว่าที่ร้อยตรีหญิงวัชรินทร์ กลับสูงเนิน		
สาขาวิชา	วิศวกรรมเครื่องกล		
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์บุณย์ฤทธิ์ ประสาทแก้ว, D.Eng.		
ปีการศึกษา	2562		

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อออกแบบและสร้างห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขดที่มี ขนาดเล็กหรือมีค่ากำลังการผลิตไอน้ำต่อน้ำหนักสูง งานวิจัยนี้รายงานผลการวิเคราะห์สมรรถนะด้วย แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด (STSG) เพื่อเป็น แนวทางในการออกแบบห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขดต้นแบบ โดยห้องเผาไหม้มีขนาดเส้น ผ่านศูนย์กลางภายใน 450 มิลลิเมตร ความสูง 100 มิลลิเมตร

การศึกษางานวิจัยนี้เป็นการจำลองระบบเพื่อวิเคราะห์ประสิทธิภาพเชิงความร้อนของห้อง เผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด (STSG) โดยห้องเผาไหม้มีอัตราการเผาไหม้คงที่ แต่มีการติดตั้งหัว เผาไหม้ด้วยจำนวนที่แตกต่างกัน ตั้งแต่ 1 ถึง 4 หัวเผา จากนั้นเพื่อวิเคราะห์ความน่าเชื่อถือของ แบบจำลองสมการทางคณิตศาสตร์ จึงมีการนำผลจากแบบจำลองสมการทางคณิตศาสตร์ไป เปรียบเทียบกับผลการทดลอง โดยหัวเผาแก๊สหุงต้มที่ใช้มีขนาด 5-20 กิโลวัตต์

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์พบว่าห้องเผาไหม้ที่ใช้หัวเผาไหม้ จำนวน 3 หัวเผา มีความเหมาะสมที่จะนำมาติดตั้งกับการใช้งานจริง เนื่องจากความยาวของเปลวไฟที่ เหมาะสมส่งผลให้ประสิทธิภาพเชิงความร้อนของระบบที่ห้องเผาไหม้มีการติดตั้งหัวเผาแบบ 3 หัวเผา สูงกว่ารูปแบบอื่น โดยที่ค่าประสิทธิภาพเชิงความร้อนแบบ 3 หัวเผา และแบบ 4 หัวเผา มีค่า ประสิทธิภาพเชิงความร้อนใกล้เคียงกัน

คำสำคัญ: แบบจำลองคอมพิวเตอร์ เครื่องกำเนิดไอน้ำขนาดกะทัดรัด เครื่องกำเนิดไอน้ำแบบท่อขด

Thesis Title	Simulation Analysis on the Performance of a Combustion		
	Chamber for Spiral–Tube Steam Generator		
Name – Surname	Acting Sub Lt. Watcharin Glabsungneon		
Program	Mechanical Engineering		
Thesis Advisor	Assistant Professor Boonrit Prasartkaew, D.Eng.		
Academic Year	2019		

ABSTRACT

The objective of this research was to design and build a combustion chamber for a compact spiral-tube steam generator with a high power to weight ratio. This research used performance analysis of the mathematical equation model of the combustion chamber for the spiral tube steam generator (STSG) to provide guidance in designing the combustion chamber for the spiral-tube steam generator prototype. The combustion chamber has the internal diameter of 450 millimeters and the height of 100 millimeters.

The system simulation was conducted to analyze the thermal efficiency of the combustion chamber for the spiral-tube steam generator (STSG) with a stable combustion rate, but there were various numbers of burners installed with 1 to 4 burners. In order to analyze the reliability of the mathematical equation model, there was a comparison between the result of the mathematical equation model and the experimental result of the LPG burner with 5-20 kilowatts.

The analysis of the mathematical equation model showed that the combustion chamber with 3 burners was suitable to be installed for actual use according to the appropriate flame length. The combustion chamber with 3 burners had the most thermal efficiency. The combustion chamber with 3 burners and 4 burners had similar thermal efficiency.

Keywords: computer simulation model, power to weight ratio, spiral-tube steam generator

กิตติกรรมประกาศ

ขอขอบคุณที่ปรึกษามหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ผู้ช่วยศาสตราจารย์ บุณย์ฤทธิ์ ประสาทแก้ว ขอขอบคุณที่ปรึกษาจากสถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) จากโครงการภาคีบัณฑิต อ. ธนิสร์ วัยโรจนวงศ์ ขอขอบคุณ อ. ศีขรินทร์ โกมลหิรัญ จากมหาวิทยาลัย เทคโนโลยีพระจอมเกล้าพระนครเหนือที่สนับสนุนเวลาในการสอนและให้คำแนะนำต่างๆในการใช้ โปรแกรมวิเคราะห์ผล ให้คำปรึกษา ข้อเสนอแนะ ตลอดระยะเวลาทำงานวิจัย และขอขอบคุณ ผศ.ดร. ขวัญชัย จ้อยเจริญ และ ดร.สถาพร ทองวิค และ ผศ.ดร.กิติพงษ์ เจาจารึก กรรมการผู้ทรงคุณวุฒิ ที่ กรุณาเสียสละเวลาเป็นกรรมการสอบวิทยานิพนธ์

ขอขอบคุณมารดา ครอบครัวที่ให้การสนับสนุนและให้กำลังใจข้าพเจ้าเสมอมา ขอขอบคุณ คณาจารย์ประจำภาควิชาวิศวกรรมเครื่องกลทุกท่านที่ได้ถ่ายทอดศาสตร์ความรู้ทางด้านวิชาการต่างๆ ให้แก่ข้าพเจ้า รวมไปถึงเจ้าหน้าที่ประจำภาควิชาวิศวกรรมเครื่องกลและเจ้าหน้าที่ประจำศูนย์และ สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) ทุกท่านที่คอยให้ความสะดวกในด้านงาน เอกสารและการใช้อุปกรณ์ต่างๆ ตลอดระยะเวลาที่ทำการศึกษา ขอขอบคุณบัณฑิตวิทยาลัยที่คอยให้ คำปรึกษาในงานด้านเอกสารต่างๆ ตลอดหลักสูตร ขอขอบคุณทุกท่านที่ไม่ได้กล่าวนามในที่นี้ที่มีส่วน ทำให้วิทยานิพนธ์เล่มนี้มีความก้าวหน้าและสำเร็จได้ในที่สุด

สุดท้ายนี้ ข้าพเจ้าหวังว่างานวิจัยนี้ จะเป็นประโยชน์แก่ผู้ที่สนใจเกี่ยวกับการออกแบบ โครงสร้างและการคำนวณผลทางพลศาสตร์ของไหลโดยใช้โปรแกรมคอมพิวเตอร์สร้างแบบจำลองทาง คณิตศาสตร์ของการเผาไหม้สำหรับเครื่องกำเนิดไอน้ำแบบท่อขด หากงานวิจัยนี้เกิดข้อผิดพลาด ประการใด ข้าพเจ้าต้องขออภัยเอาไว้ ณ ที่นี้ด้วย

วัชรินทร์ กลับสูงเนิน

	e la construction de la construc	
สา	รบถู	ļ

	หน้า
บทคัดย่อภาษาไทย	(3)
บทคัดย่อภาษาอังกฤษ	(4)
กิตติกรรมประกาศ	(5)
สารบัญ	(6)
สารบัญตาราง	(8)
สารบัญรูป	(9)
บทที่ 1 ้บทนำ	12
1.1 ความเป็นมาของงานวิจัย	12
1.2 วัตถุประสงค์	13
1.3 ขอบเขตงานวิจัย	13
1.4 ขั้นตอนการศึกษา	13
1.5 ประโยชน์ที่คาดว่าจะได้รับ	13
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง	14
2.1 ทฤษฎีเครื่องยนต์สันดาปภายนอก	14
2.2 สมการพื้นฐานสำหรับการไหล	15
2.3 ทฤษฎีการถ่ายเทความร้อน	22
2.4 ทฤษฎีการเผาไหม้	24
2.5 สมการควบคุมพื้นฐาน	34
2.6 สรุปสาระสำคัญจากเอกสารงานวิจัยที่เกี่ยวข้อง	
บทที่ 3 วิธีดำเนินการวิจัย	42
3.1 บทนำ	42
3.2 แผนการดำเนินงานวิจัย	42
3.3 สถานที่ทำการติดตั้งและทดสอบ	44
3.4 เครื่องมือและวิธีการทดลอง	45
3.5 วิธีการทดสอบและการบันทึกผล	45
3.6 เงื่อนไขและขอบเขตของข้อมูลในการจำลอง และทดสอบ	45
3.7 การวิเคราะห์ผลกระทบของ Mesh ต่อการคำนวณ	46
3.8 การวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์	49
3.9 การทดสอบการใช้งานจริง	50
บทที่ 4 ผลการวิเคราะห์ข้อมูล	53
4.1 ผลการวิเคราะห์ผลกระทบของ Mesh ต่อการคำนวณ	53
4.2 ผลการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้	57

สารบัญ(ต่อ)

	หน้า
4.3 ผลการทดสอบใช้งานจริงกับห้องเผาไหม้	66
4.4 การเทียบผลของแบบจำลองกับการทดสอบ	68
บทที่ 5 สรุปผลการวิจัย อภิปรายผล และข้อเสนอแนะ	69
5.1 สรุปผลการทดลอง	69
5.2 ข้อเสนอแนะ	70
บรรณานุกรม	71
ภาคผนวก	72
ภาคผนวก ก การคำนวณและขั้นตอนการใช้งาน FLUENT	73
ภาคผนวก ข แบบห้องเผาไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด	82
ภาคผนวก ค รูปประกอบการสร้างห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด และการทดลอง	84
ภาคผนวก ง ตารางที่ใช้ในการคำนวณ	93
ประวัติผู้เขียน	.101

สารบัญตาราง

		หน้า
ตารางที่ 2.1	Flammability limit ของก๊าซผสมระหว่างเชื้อเพลิงต่างๆ-อากาศ	
ตารางที่ 2.2	วิธีเผาไหม้ประเภทต่างๆ	29
ตารางที่ 3.1	ข้อมูลที่ใช้ในวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์แทนค่าใน	Boundary
	Condition และใช้ในการทดสอบใช้งานจริง	45
ตารางที่ 3.2	การปรับค่า Mesh Sizing เพื่อหาค่า Mesh ที่เหมาะสม	48
ตารางที่ 4.1	อุณหภูมิเทียบกับเวลาในการทดสอบ	66
ตารางที่ 5.1	เปรียบเทียบอุณหภูมิการทดสอบระหว่างการวิเคราะห์แบบจำลอง	
	และการทดสอบจริง	69
ตารางที่ ก.1	องค์ประกอบคิดเป็นร้อยละโดยน้ำหนักของแก๊สหุงต้ม(LPG)	74
ตารางที่ ก.2	ค่าของตัวแปรที่ใช้ในการคำนวณแบบ 1 หัวเผาไหม้จากการคำนวณเ	ชิงตัวเลข CFD75
ตารางที่ ก.3	ค่าของตัวแปรที่ใช้ในการคำนวณแบบ 2 หัวเผาไหม้จากการคำนวณเ	ชิงตัวเลข CFD75
ตารางที่ ก.4	ค่าของตัวแปรที่ใช้ในการคำนวณแบบ 3 หัวเผาไหม้จากการคำนวณเ	ชิงตัวเลข CFD75
ตารางที่ ก.5	ค่าของตัวแปรที่ใช้ในการคำนวณแบบ 4 หัวเผาไหม้จากการคำนวณเ	ชิงตัวเลข CFD76

สารบัญรูป

		หน้า
รูปที่ 2.1	ค่าความเร็ว <i>u</i> ในการไหลแบบปั่นป่วน	18
รูปที่ 2.2	รูปแบบกระแสเปลวไฟของ Slot Burner	26
รูปที่ 2.3	ความเร็วของการเผาไหม้แบบกระแสราบเรียบของอากาศผสมชนิดต่างๆ	27
รูปที่ 2.4	Diffusion flame ลักษณะต่างๆ	30
รูปที่ 2.5	ลักษณะและความยาวของ Jet diffusion flame	31
รูปที่ 2.6	ลักษณะการไหลของก๊าซรอบๆ Flame stabilizer (เปลวไฟโพรเพน-อากาศ	
	อุณหภูมิห้อง ความดัน บรรยากาศ)	32
รูปที่ 2.7	Blow off limit จาก flame stabilizer รูปทรงกระบอก (เปลวไฟโพรเพน-อากาศ	
	อุณหภูมิห้อง ความดัน บรรยากาศ)	33
รูปที่ 2.8	แสดงรูปร่างลักษณะพื้นฐาน (Basic Geometry) ของห้องเผาไหม้แบบทรงกระบอก	37
รูปที่ 2.9	แสดงปริมาณคาร์บอนไดออกไซด์โดยเฉลี่ยที่ทางออกจากงานวิจัยของ	38
รูปที่ 2.10	แสดงผลการกระจายตัวของอุณหภูมิจากงานวิจัยของ Chaouki Ghenai	38
รูปที่ 2.11	แสดงอุณหภูมิที่แกนกลางห้องเผาไหม้ในกรณีเลื่อนต่ำ แหน่งของรูอากาศเจือจางจาก	39
รูปที่ 2.12	ภาพมุมต่างๆของเตาที่สร้างแบบจำลองทางคณิตศาสตร์	40
รูปที่ 2.13	ภาพแสดงรูปร่างทางความร้อน	40
รูปที่ 2.14	การปล่อยโดยเปลี่ยนความเร็วของเชื้อเพลิง	41
รูปที่ 2.15	แสดงรูปร่างของคาร์บอนที่จะเกาะภายในเตา	41
รูปที่ 3.1	ตำแหน่งและระยะการวัดผลของอุณหภูมิ และความเร็วการไหลของการวิเคราะห์ Mesh	46
รูปที่ 3.2	การสร้าง Mesh ที่ 1 หัวเผาไหม้	46
รูปที่ 3.3	การสร้าง Mesh ที่ 2 หัวเผาไหม้	47
รูปที่ 3.4	การสร้าง Mesh ที่ 3 หัวเผาไหม้	47
รูปที่ 3.5	การสร้าง Mesh ที่ 4 หัวเผาไหม้	48
รูปที่ 3.6	วิธีการดำเนินงานการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์	49
รูปที่ 3.7	การทดสอบวัดผล และตำแหน่งของอุปกรณ์ของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อข	ด.50
รูปที่ 3.8	Model ตำแหน่งทางเข้าอากาศ ทางเข้าเชื้อเพลิง และทางออกไอเสียของ	
	แบบจำลองห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด	51
รูปที่ 3.9	ตำแหน่งการวัดอุณหภูมิของแบบจำลองห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด	51
รูปที่ 3.10	ตำแหน่งการวัดอุณหภูมิของการทดสอบใช้จริงกับห้องเผาไหม้เครื่องกำเนิดไอน้ำ	
	แบบท่อขด	52
รูปที่ 3.11	การทดสอบใช้งานจริงกับห้องเผาไหม้แบบ 3 หัวเผา	52
รูปที่ 4.1	ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 1 Burner	53

สารบัญรูป(ต่อ)

		หน้า
รูปที่ 4.2	ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 1 Burner	54
รูปที่ 4.3	ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 2 Burner	54
รูปที่ 4.4	ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 2 Burner	55
รูปที่ 4.5	ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 3 Burner	55
รูปที่ 4.6	ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 3 Burner	56
รูปที่ 4.7	ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 4 Burner	56
รูปที่ 4.8	ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 4 Burner	57
รูปที่ 4.9	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 1 หัวเผา (ด้านบน)	57
รูปที่ 4.10	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 1 หัวเผา (ด้านบน)	58
รูปที่ 4.11	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 1 หัวเผา (ด้านข้าง)	58
รูปที่ 4.12	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 1 หัวเผา (ด้านข้าง)	59
รูปที่ 4.13	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 2 หัวเผา (ด้านบน)	59
รูปที่ 4.14	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 2 หัวเผา (ด้านบน)	60
รูปที่ 4.15	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 2 หัวเผา (ด้านข้าง)	60
รูปที่ 4.16	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 2 หัวเผา (ด้านข้าง)	61
รูปที่ 4.17	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 3 หัวเผา (ด้านบน)	61
รูปที่ 4.18	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 3 หัวเผา (ด้านบน)	62
รูปที่ 4.19	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 3 หัวเผา (ด้านข้าง)	62
รูปที่ 4.20	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 3 หัวเผา (ด้านข้าง)	63
รูปที่ 4.21	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 4 หัวเผา (ด้านบน)	63
รูปที่ 4.22	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 4 หัวเผา (ด้านบน)	64
รูปที่ 4.23	แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 4 หัวเผา (ด้านข้าง)	64
รูปที่ 4.24	แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 4 หัวเผา (ด้านข้าง)	65
รูปที่ 4.25	กราฟแสดงผลจากการทดสอบและเก็บผลใช้งานจริงของห้องเผาไหม้	
	เครื่องกำเนิดไอน้ำแบบท่อขดแบบ 3 หัวเผา	67
รูปที่ 4.26	กราฟแสดงผลจากการเทียบผลของแบบจำลองกับการทดสอบ	68
รูปที่ ก.1	การเลือก Solver	76
รูปที่ ก.2	การเลือก Energy Equation	77
รูปที่ ก.3	การเลือก Turbulent Model	77
รูปที่ ก.4	การเลือก Radiation Model	78
รูปที่ ก.5	การเลือก Combustion Model	78
รูปที่ ก.6	การกำหนด Boundary Condition	79
รูปที่ ก.7	การเลือก Solution Method	79

สารบัญรูป(ต่อ)

			หน้า
รูปที่	ก.8	การกำหนดค่าเริ่มต้นสำหรับการจำลอง	80
รูปที่	ก.9	การกำหนด Residual Monitors	80
รูปที่	ก.10	รอบการคำนวณสำหรับบันทึกข้อมูลของการจำลอง	81
รูปที่	ก.11	จำนวนรอบการคำนวณของการจำลอง	81
รูปที่	ข.1	แบบห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด	83
รูปที่	ข.2	แบบด้านหน้า, ด้านข้าง และด้านบน ของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด	83
รูปที่	ค.1	ชิ้นส่วนโครงสร้างห้องเผาไหม้	85
รูปที่	ค.2	ชิ้นส่วนโครงสร้างห้องเผาไหม้ส่วนฝา	85
รูปที่	ค.3	การวางเซรามิกซ์เปเปอร์เพื่อเป็นฉนวนภายในห้องเผาไหม้	86
รูปที่	ค.4	การวางแบบหล่อคอนกรีตทนไฟ	86
รูปที่	ค.5	การเทคอนกรีตทนไฟภายในห้องเผาไหม้	87
รูปที่	ค.6	การเทคอนกรีตทนไฟที่ฝาปิดห้องเผาไหม้	. 87
รูปที่	ค.7	การประกอบโครงสร้างเข้ากับห้องเผาไหม้	88
รูปที่	ค.8	การประกอบฝาห้องเผาไหม้	88
รูปที่	ค.9	การติดตั้งระบบป้อนอากาศ	89
รูปที่	ค.10	การติดตั้งระบบป้อนแก๊สหลัก	89
รูปที่	ค.11	การติดตั้งระบบป้อนแก๊สแยก 3 ช่องทาง	90
รูปที่	ค.12	การติดตั้งระบบไฟฟ้า	90
รูปที่	ค.13	ทดลองเดินระบบการเผาไหม้และแก้ไขปรับปรุงระบบ	91
รูปที่	ค.14	ทดลองเดินระบบการเผาไหม้ และปรับจูนระบบ	91
รูปที่	ค.15	ทดลองเดินระบบการเผาไหม้ และเก็บข้อมูลการทดลอง	92

บทที่ 1 บทนำ

1.1 ความเป็นมาของงานวิจัย

ในช่วงที่โลกมีความเจริญก้าวหน้ามากขึ้นมีการขยายตัวของอุตสาหกรรม การเติบโตขึ้นของ ชุมชนเมือง ประชาการที่เพิ่มมากขึ้น และการใช้รถใช้ถนนที่เพิ่มมากขึ้นก่อให้เกิดปัญหามลภาวะที่เพิ่ม มากขึ้น แต่เชื้อเพลิงหรือแหล่งพลังงานกลับมีปริมาณลดน้อยลง การควบคุมมลภาวะและการใช้ พลังงานอย่างคุ้มค่าเป็นประเด็นที่ต้องได้รับความสนใจ ทั้งนี้ปัญหาการใช้พลังงานความร้อนและ เชื้อเพลิงอย่างไร้ประสิทธิภาพจากภาคอุตสาหกรรม จึงมีผลทำให้เกิดการคิดค้นการนำพลังงานทดแทน หรือแม้แต่การหาแหล่งพลังงานเชื้อเพลิงเกรดต่ำเข้ามาแทนที่การใช้พลังงานเชื้อเพลิงประสิทธิภาพสูง แต่ในปัจจุบันโรงไฟฟ้าชีวมวลประสบปัญหาในด้านการเลาไหม้ของเครื่องยนต์สันดาปภายใน เนื่องจาก เครื่องยนต์สันดาปภายในนิยมใช้เชื้อเพลิงประสิทธิภาพสูงในการเผาไหม้ ซึ่งเมื่อต้องการประหยัด พลังงานเชื้อเพลิง เพื่อลดต้นทุน จึงมีการเปลี่ยนแปลงในด้านพลังงานโดยใช้เชื้อเพลิงแก็สซิไฟเออร์ที่มา จากการเผาไหม้ชีวมวลทดแทนในภาคอุตสาหกรรมทำให้เกิดปัญหาในกระบวนการเผาไหม้ภายใน เครื่องยนต์ซึ่งเป็นผลมาจากน้ำมันทาร์ทำให้เครื่องยนต์เกิดคราบน้ำมันทาร์สะสม ซึ่งส่งผลต่อการ ทำงานของชิ้นส่วนที่มีการเคลื่อนที่ภายในห้องเมาใหม้เครื่องยนต์ จึงเป็นสาเหตุที่ทำให้เกิดการสึกหรอ ของเครื่องยนต์สันดาปภายใน โดยจำเป็นต้องมีการช่อมบำรุงรักษาอย่างต่อเนื่องและมีภาระค่าใช้จ่าย ในส่วนนี้สูง

จากปัญหาข้างต้นจึงมีแนวคิดในการพัฒนาเครื่องกำเนิดไอน้ำแบบท่อขดซึ่งเป็นเครื่องยนต์ สันดาปภายนอกประเภทหนึ่ง เพราะมีกลไกการทำงานที่ไม่ซับซ้อนเหมาะสมกับการนำมาใช้งานกับ พลังงานเชื้อเพลิงแก๊สซิไฟเออร์ที่มาจากการเผาไหม้ชีวมวล เนื่องจากโครงสร้างและส่วนประกอบ ภายในของเครื่องกำเนิดไอน้ำแบบท่อขดไม่มีขึ้นส่วนในการเคลื่อนที่ใดๆ มีเพียงห้องเผาไหม้เท่านั้น โดย อาศัยการป้อนเชื้อเพลิงแก๊สซิไฟเออร์ที่มาจากการเผาไหม้ชีวมวลเข้าสู่ห้องเผาไหม้เพื่อให้เกิดพลังงาน ความร้อน จึงไม่ส่งผลต่อกลไกการทำงานของเครื่องกำเนิดไอน้ำแบบท่อขด แต่ใช้เพียงพลังงานความ ร้อนที่ได้จากห้องเผาไหม้ส่งผ่านไปยังหม้อต้มไอน้ำแบบท่อขด (Water Tube Boiler) ทำให้น้ำที่อยู่ ภายในท่อเกิดความร้อนและเปลี่ยนแปลงสถานะกลายเป็นไอน้ำเพื่อนำไปใช้ในระบบการขับเคลื่อน เครื่องยนต์ในโรงไฟฟ้าชีวมวลขนาดเล็ก โดยเครื่องกำเนิดไอน้ำแบบท่อขดมีข้อดีในด้านการใช้เชื้อเพลิง เกรดต่ำ มีขนาดกะทัดรัดและมีพื้นผิวในการแลกเปลี่ยนความร้อนและการเผาไหม้ได้ดี

แต่ในที่นี้จะศึกษาการวิเคราะห์สมรรถนะด้วยแบบจำลองสมการทางคณิตศาสตร์ของห้องเผา ใหม้เครื่องกำเนิดไอน้ำแบบท่อขด (STSG) เพื่อศึกษาความร้อนภายในห้องเผาไหม้ของเครื่องกำเนิดไอ น้ำแบบท่อขด (STSG) ที่ห้องเผาไหม้มีอัตราการเผาไหม้คงที่ โดยวิเคราะห์แบบจำลองสมการทาง คณิตศาสตร์ที่มีจำนวนหัวเผาไหม้ที่แตกต่างกัน ตั้งแต่ 1 ถึง 4 หัวเผา จากนั้นวิเคราะห์ความน่าเชื่อถือ ของแบบจำลองโดยการนำผลจากแบบจำลองไปทดลองกับการใช้งานจริงและเปรียบเทียบผล โดยหัว เผาไหม้แก๊สหุงต้มที่ใช้มีขนาด 5-20 กิโลวัตต์

1.2 วัตถุประสงค์

 1.2.1 เพื่อวิเคราะห์สมรรถนะด้วยแบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้เครื่อง กำเนิดไอน้ำแบบท่อขด (STSG) โดยวิเคราะห์อุณหภูมิ และความเร็วในการไหลที่เกิดขึ้นภายในห้องเผา ไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด

1.2.2 เพื่อวิเคราะห์ประสิทธิภาพเชิงความร้อนของห้องเผาไหม้ โดยมีจำนวนหัวเผาไหม้ที่ 1,
 2, 3 และ 4 หัวเผาไหม้ ตามลำดับ

1.2.3 เพื่อวิเคราะห์ความน่าเชื่อถือของแบบจำลองที่สร้างขึ้น โดยนำผลที่ได้จาการวิเคราะห์ ด้วยโปรแกรมมาทำการทดลองใช้งานจริง และเปรียบเทียบผลกับการจำลอง

1.3 ขอบเขตงานวิจัย

1.3.1 วิเคราะห์แบบจำลองสมการทางคณิตศาสตร์แบบไฟไนต์วอลุม

1.3.2 วิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของอุณหภูมิ และความเร็วในการไหลที่
 เกิดขึ้นภายในห้องเผาไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด โดยมีการเปรียบเทียบชุดหัวเผาไหม้ที่ 1, 2,
 3 และ 4 จากอุณหภูมิ และความเร็วในการไหลที่ได้ในการเผาไหม้

1.3.3 เปรียบเทียบผลที่ได้จากแบบจำลองสมการทางคณิตศาสตร์ของการเผาไหม้กับผลการ ทดลอง เพื่อตรวจสอบความถูกต้องของแบบจำลอง

1.3.4 ในการวิจัยนี้ใช้แก๊ส LPG เป็นเชื้อเพลิงในการจำลองและทดลอง

1.3.5 หัวเผาไหม้แก๊สหุงต้มที่ใช้มีขนาด 5-20 กิโลวัตต์

1.4 ขั้นตอนการศึกษา

1.4.1 เขียนแบบห้องเผาไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด

1.4.2 วิเคราะห์แบบจำลองสมการทางคณิตศาสที่มีหัวเผาแก๊สจำนวน 1, 2, 3 และ 4 หัว เผาไหม้ ตามลำดับ

1.4.3 ทดลองใช้งานจริง

1.4.4 นำผลจากแบบจำลองทางคณิตศาสตร์มาเปรียบเทียบกับผลการทดลอง เพื่อตรวจ สอบความถูกต้องของแบบจำลอง

1.4.5 สรุปผลการวิจัยและทำรายงานการวิจัย

1.5 ประโยชน์ที่คาดว่าจะได้รับ

1.5.1 เพื่อเป็นพื้นฐานสำหรับการออกแบบเครื่องยนต์สันดาปภายนอกและไปประยุกต์ใช้ ในการผลิตไฟฟ้าขนาดเล็ก และการคำนวณตัวแปรต่างๆที่ใช้ในการจำลองการไหลภายในท่อ

1.5.2 เพื่อจะเป็นแนวทางในการพัฒนา และทำการปรับปรุงประสิทธิภาพของเครื่องยนต์ สันดาปภายนอกให้เหมาะสมกับผลิตไฟฟ้าขนาดเล็กในอนาคต

1.5.3 สามารถประยุกต์ความรู้การสร้างแบบจำลองทางคณิตศาสตร์เพื่อใช้กับงานวิจัยด้าน อื่นๆ ได้

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

การวิจัยนี้ผู้วิจัยได้ศึกษาค้นคว้าข้อมูลต่างๆที่เกี่ยวข้องจากเอกสารตำราและงานวิจัย การศึกษาอุปกรณ์แลกเปลี่ยนความร้อนแบบท่อและระบบการทำงานในห้องเผาไหม้ จะต้องมีความ เข้าใจในส่วนพื้นฐานและหลักการทำงานในเรื่องการแลกเปลี่ยนความร้อน หรือแม้แต่การถ่ายเทความ ร้อนและการเผาไหม้ ซึ่งจะเป็นประโยชน์ที่ทำให้งานวิจัยนี้บรรลุตามวัตถุประสงค์ที่ได้ตั้งไว้ซึ่งแบ่งเป็น หัวข้อดังต่อไปนี้

2.1 ทฤษฎีเครื่องยนต์สันดาปภายนอก

เครื่องยนต์เป็นส่วนประกอบสำคัญที่ทำให้รถยนต์มีความแตกต่างไปจากรถที่ใช้แรงฉุดลาก หรือการขับเคลื่อนจากแรงภายนอกเครื่องยนต์จะเป็นต้นกำลังในการสร้างพลังงานที่ใช้ขับเคลื่อนรถให้ เคลื่อนที่ได้ เครื่องยนต์ ทำหน้าที่เปลี่ยนพลังงานความร้อนเป็นพลังงานกล มีการเผาไหม้ภายนอกเป็น การเผาไหม้จากภายนอกเครื่องยนต์ แล้วนำความร้อนจากการเผาไหม้ที่ได้ไปใช้งาน เช่น เครื่องจักรไอ ้น้ำที่ใช้ในการขับเคลื่อนหัวจักรรถไฟในอดีตที่อาศัยการต้มน้ำให้ร้อนด้วยเตาที่มีเชื้อเพลิงเป็นฟืน แล้วจึง นำไอน้ำไปขับดันเครื่องจักรไอน้ำ เมื่อเครื่องจักรไอน้ำทำงานจึงขับดันให้ล้อของหัวรถจักรหมุนได้และ ้ขับเคลื่อนรถได้ และการเผาไหม้ภายใน คือ เครื่องยนต์ที่มีการระเบิดหรือเผาไหม้ส่วนผสมของเชื้อเพลิง ้กับอากาศเกิดขึ้นภายในเครื่องยนต์ แรงระเบิดจากการเผาไหม้จะถูกเปลี่ยนเป็นพลังงาน เพื่อใช้ในการ ขับเคลื่อน ในยุคแรกๆของการพัฒนารถยนต์ได้มีการคิดค้นหาแหล่งพลังงานหรือต้นกำลังในการทำให้รถ เคลื่อนที่ได้หลากหลายชนิด เช่น แรงลม พลังไอน้ำ พลังงานไฟฟ้า ฯลฯ แต่สุดท้ายจึงเห็นว่าการนำ ้เครื่องยนต์แบบสันดาปภายในมาใช้ในการขับเคลื่อนรถเป็นวิธีที่มีปัญหาน้อยที่สุด ตั้งแต่นั้นมาเป็นเวลา กว่า 120 ปีที่ได้มีการใช้เครื่องยนต์สันดาปภายในควบคู่กับรถยนต์มาตลอด และรถยนต์ยังครอบคลุม ้ไปถึงรถที่เคลื่อนที่ด้วยพลังงานอื่นๆ เช่น รถไฟฟ้า หรือรถไฮบริดจ์ ที่ใช้ได้ทั้งพลังไฟฟ้าและเครื่องยนต์ ้สันดาปภายในด้วยเครื่องยนต์แบบสันดาปภายในที่ใช้กับกับรถยนต์มาตั้งแต่ยุคแรกเริ่มเมื่อ120 กว่าปี ก่อน กับเครื่องยนต์ที่ใช้กับ รถยนต์ ในยุคปัจจุบัน ยังคงมีโครงสร้างและหลักการทำงานที่แทบจะไม่ แตกต่างกัน ความแตกต่างระหว่าง เครื่องยนต์ของรถยนต์รุ่นเก่ากับรุ่นปัจจุบันมีความแตกต่างกันใน เรื่องของรูปทรงที่กะทัดรัด และประสิทธิภาพการทำงานที่สูงขึ้นนับร้อยเท่า เช่น เครื่องยนต์แบบสูบ เดี่ยวของรถยนต์คันแรกของโลก มีความจุกระบอก สูบ 958 ซีซี. ให้กำลังเทียบเท่ากับม้าประมาณ 0.8 ้ตัว แต่เครื่องยนต์ของรถรุ่นที่จำหน่ายในท้องตลาดปัจจุบันจะเฉลี่ยอยู่ที่ ประมาณ 60 ไปจนถึง 100 กว่าแรงม้าต่อเครื่องยนต์ที่ที่ความจุ 1 ลิตรและไม่อาจเทียบได้กับเครื่องยนต์ของรถแข่งที่สามารถผลิต แรงม้าออกมาได้มากเป็นหลายร้อยแรงม้าเมื่อเทียบกับความจุเครื่องยนต์1 ลิตรเท่ากัน นี่คือ วิวัฒนาการ ้ของสิ่งที่เกิดขึ้นในช่วงร้อยกว่าปี เครื่องยนต์แบบสันดาปภายในได้แก่ เครื่องยนต์ที่มีการระเบิดหรือเผา ใหม้ส่วนผสมของเชื้อเพลิงกับอากาศเกิดขึ้นภายในเครื่องยนต์ แรงระเบิดจากการเผาไหม้จะถูก เปลี่ยนเป็นพลังงานเพื่อใช้ในการขับเคลื่อนตัวรถ เมื่อเอาอากาศกับน้ำมันเชื้อเพลิงป้อนเข้าสู่เครื่องยนต์ และให้มีกระบวนการจุดระเบิดขึ้นส่วนผสมทั้งสองชนิดภายในกระบอกสูบ เครื่องยนต์จะทำงานหรือเกิด การหมุนที่เพลาข้อเหวี่ยงของเครื่องยนต์ทำให้ได้พลังงานจากการหมุนของเครื่องยนต์นี้ไปใช้ในการ ขับเคลื่อนรถยนต์อีกทีหนึ่ง ความแตกต่างจากเครื่องยนต์สันดาปภายนอก เครื่องยนต์แบบสันดาป ภายใน จะมีกระบวนการเผาไหม้ของอากาศกับเชื้อเพลิงเกิดขึ้นภายในเครื่องยนต์ในกระบอกสูบ แต่ เครื่องยนต์สันดาปภายนอกเป็นการเผาไหม้จากภายนอกเครื่องยนต์ แล้วจึงนำความร้อนจากการเผา ไหม้ที่ได้นั้นไปใช้งาน เครื่องจักรไอน้ำที่ใช้ในการขับเคลื่อนหัวจักรรถไฟในอดีต ที่อาศัยการต้มน้ำให้ร้อน ด้วยเตาที่มีเชื้อเพลิงเป็นฟืน แล้วจึงนำเอาไอน้ำไปขับดันเครื่องจักรไอน้ำอีกต่อหนึ่ง เมื่อเครื่องจักรไอน้ำ ทำงานจึงสามารถขับดันให้ล้อของหัวรถจักร หมุนได้ และขับเคลื่อนรถได้ แต่ก็ด้วยประสิทธิภาพที่ต่ำ มากเพราะต้องสูญเสียพลังงานในการขับเคลื่อนไปหลายขั้นตอนกว่าจะถึงล้อรถความนิยมลดน้อยลงไป จนแทบไม่เหลือให้เห็นในปัจจุบัน

2.2 สมการพื้นฐานสำหรับการไหล

การคำนวณพลศาสตร์ของไหล (Computational Fluid Dynamics, CFD) เป็นเครื่องมือ ช่วยแก้ปัญหาที่ซับซ้อนที่เกี่ยวข้องกับการไหล โดยใช้ระเบียบวิธีเชิงตัวเลข (Numerical Method) คำนวณเพื่อประมวลผลเฉลยของสมการอนุพันธ์ย่อยที่มีความซับซ้อน ซึ่งมีความยุ่งยากในการหาผล เฉลยด้วยวิธีแม่นตรง หลักสำคัญในการคำนวณพลศาสตร์ของไหลต้องเกี่ยวข้องกับสมการบังคับ ซึ่ง สมการบังคับพื้นฐานของพลศาสตร์ของไหลได้แก่ สมการความต่อเนื่อง (Continuity Equation)เหล่านี้ จะได้มาจากหลักทางกายภาพ 3 หลักด้วยกันคือ กฎการอนุรักษ์มวล (Conservation of Mass) กฎการ อนุรักษ์โมเมนตัม (Conservation of Momentum) และกฎการอนุรักษ์พลังงาน (Conservation of Energy) และสมการบังคับที่ได้จะอยู่ในรูปของสมการอนุพันธ์ย่อยที่อธิบายปรากฏการณ์ที่เกิดขึ้น หลังจากนั้นใช้ระเบียบวิธีเชิงตัวเลขประมาณผลเฉลยของสมการอนุพันธ์ สำหรับระเบียบวิธีเชิงตัวเลขที่ ใช้กันทั่วไปได้แก่ ระเบียบวิธีผลต่างสืบเนื่อง (Finite Difference) ระเบียบวิธีจำกัดมูลฐาน (Finite-Element) และระเบียบวิธีปริมาตรสืบเนื่อง (Finite Volume) เป็นต้น

2.2.1. กฎอนุรักษ์มวล

เมื่อพิจารณาปริมาตรควบคุมของของไหลต่อเนื่อง การส่งถ่ายมวลเข้าออกปริมาตรควบคุม จะเป็นไปตามหลักการอนุรักษ์มวลสามารถเขียนในรูปสมการคือ

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overline{u}) = 0 \tag{2.1}$$

2.2.2 กฎอนุรักษ์โมเมนตัม

หลักการอนุรักษ์โมเมนตัมเป็นการประยุกต์ใช้กฎการเคลื่อนที่ข้อที่ 2 ของนิวตันและเมื่อ พิจารณาปริมาตรควบคุมจะได้ว่า อัตราการเปลี่ยนแปลงสุทธิของโมเมนตัมของปริมาตรควบคุมเท่ากับ ผลรวมของอัตราการเปลี่ยนแปลงโมเมนตัมภายในปริมาตรควบคุมกับโมเมนตัมสุทธิที่ไหลผ่านผิว ควบคุม ดังสมการ

$$\frac{\partial}{\partial t} \oiint_{V} \rho \overline{u} dV + \oiint_{S} \rho \overline{u} (\overline{u} \cdot d\overline{S})$$
(2.2)

แรงลัพธ์สุทธิที่กระทำต่อปริมาตรควบคุมแบ่งเป็น 2 ชนิด คือ ชนิดแรกเป็นแรงเนื่องจาก สนามดึงดูด (Field Force) ซึ่งได้แก่ แรงโน้มถ่วงโลก (Body Force) และแรงเนื่องจากสนามแม่เหล็ก ไฟฟ้า ชนิดที่สองเป็นกระทำที่ผิว (Surface Force) ซึ่งแบ่งออกเป็นแรงในแนวตั้งฉากได้แก่ความดัน ความเค้นอัดหรือดึง แรงในแนวขนานกับผิว ได้แก่ ความเค้นเฉือน ดังสมการ

$$\oiint_{V} \rho \bar{f} dV + \oiint_{S} \bar{\sigma} d\bar{S}$$
(2.3)

ดังนั้นสมการโมเมนตัม คือ

$$\frac{\partial}{\partial t} \oiint_{V} \rho \overline{u} dV + \oiint_{S} \rho \overline{u} (\overline{u} \cdot d\overline{S}) = \oiint_{V} \rho \overline{f} dV + \oiint_{S} \overline{\sigma} d\overline{S}$$
(2.4)

ใช้ทฤษฎีของเกาต์ช่วยในการเปลี่ยนรูปสมการดังนี้

$$\oint_{S} \rho \vec{u} (\vec{u} \cdot d\vec{S}) = \iiint_{V} \nabla \cdot (\rho \overline{u} \overline{u}) dV$$
(2.5)

$$\iint_{S} \overline{\sigma} d\overline{S} = \iiint_{V} \nabla \cdot \overline{\sigma} dV
 \tag{2.6}$$

จะได้สมการโมเมนตัมในรูปสมการอนุพันธ์เชิงย่อยดังนี้

$$\frac{\partial}{\partial t}\rho\overline{u} + \nabla \cdot (\rho\overline{u}\overline{u}) = \rho\overline{f} + \nabla \cdot \overline{\sigma}$$
(2.7)

เรียกสมการว่าสมการนาเวียร์-สโตคส์ (Navier-Stokes E uation) และสามารถเขียนสมการ ให้อยู่ในรูปเทนเซอร์ (Tensor) ดังนี้

$$\frac{\partial(\rho u_j)}{\partial t} + \frac{\partial(\rho u_j u_k)}{\partial x_k} = \frac{\partial\sigma_{ij}}{\partial x_i} + \rho f_j$$
(2.8)

เมื่อพิจารณาแยกเทอม $pu_{j}\,u_{k}$ เป็น $pu_{k}\,$ และ u_{j} แล้วจัดรูปสมการอนุพันธ์เชิงย่อยจะได้

$$p\frac{\partial u_j}{\partial t} + u_j\frac{\partial \rho}{\partial t} + u_j\frac{\partial (\rho u_k)}{\partial x_k} + \rho u_k\frac{\partial u_j}{\partial x_k} = \frac{\partial \sigma_{ij}}{\partial x_i} + \rho f_i$$
(2.9)

้ใช้สมการความต่อเนื่องเพื่อกำจัดเทอมที่สองและสาม จะได้สมการนาเวียร์-สโตคส์ ดังนี้

$$p\frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = \frac{\partial \sigma_{ij}}{\partial x_i} + \rho f_i$$
(2.10)

$$\sigma_{ij} = -p \delta_{ij} + \tau_{ij} \tag{2.11}$$

สำหรับของไหลแบบนิวตัน (Newtonian Fluid) ซึ่งความเค้นเฉือนเป็นสัดส่วนโดยตรงกับ อัตราการเปลี่ยนแปลงรูปร่างของไหล ได้เทนเซอร์ความเค้นเฉือน (Shear Stress Tensor) คือ

$$\tau_{ij} = \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
(2.12)

แทนค่าความเค้นเฉือนในสมการลงในสมการด้านบนได้เทนเซอร์ความเค้น (Stress Tensor)

$$\sigma_{ij} = -p\delta_{ij} + \lambda\delta \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
(2.13)

เมื่อ μ คือ สัมประสิทธิ์ความหนืดสัมบูรณ์ (Absolute or Dynamic Viscosity Coefficient)

- λ คือ สัมประสิทธิ์ความหนืดอันดับสอง (Second Viscosity Coefficient)
- δ_{ij} คือ Kronecker Delta (มีค่าเป็น 1 เมื่อ i = j และมีค่าเป็น 0 เมื่อ i = j)

สโตคส์ (Stokes) ตั้งสมมุติฐานความสัมพันธ์ระหว่าง u และ λ ไว้ดังนี้

$$\lambda = -\frac{2}{3}u \tag{2.14}$$

แทนค่าเทนเซอร์ความเค้นในสมการนาเวียร์-สโตคส์ ได้สมการนาเวียร์-สโตคส์ที่สมบูรณ์ คือ

$$p\frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = -\frac{\partial p}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\lambda \frac{\partial u_k}{\partial x_k}\right) + \frac{\partial}{\partial x_i} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)\right] + \rho f_j \qquad (2.15)$$

เมื่อพิจารณาการไหลให้เป็นการไหลแบบไม่อัดตัวและค่าสัมประสิทธิ์ความหนืดสัมบูรณ์มี ค่าคงที่ทำให้เทอมที่สองทางด้านขวามือของสมการมีค่าเป็นศูนย์และเทอมที่สามารถจัดรูปสมการใหม่ เป็น

$$\frac{\partial}{\partial x_i} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] = \mu \left[\frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_i} \right) + \frac{\partial^2 u_j}{\partial x_i \partial x_i} \right] = \mu \frac{\partial^2 u_j}{\partial x_i \partial x_i}$$
(2.16)

จะได้สมการนาเวียร์-สโตคส์ สำหรับกรณีไหลแบบอัดตัวไม่ได้และค่าสัมประสิทธิ์ความหนืด สัมบูรณ์มีค่าคงที่ดังนี้

$$p\frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = -\frac{\partial p}{\partial x_j} + \mu \frac{\partial^2 u_j}{\partial x_i \partial x_i} + \rho f_i$$
(2.17)

สมการสองสมการนี้เรียกว่าสมการนาเวียร์-สโตคส์จากการเฉลี่ยของเรย์โนลด์ (Reynolds-Averaged Navie r-Stokes Equation, RANS) จะสังเกตเห็นได้ว่าสมการที่ได้นี้จะมีรูปแบบคล้ายคลึง กับสมการนาเวียร์-สโตคส์ เพียงแต่มีเทอมของ ค่าความเค้นของเรย์โนลด์ (Reynolds Stress) เพิ่ม ขึ้นมาในสมการ ซึ่งเป็นผลมาจากการไหลที่เป็นแบบปั่นป่วนนั่นเองเทอมความเค้นของเรย์โนลด์ที่เพิ่ม ขึ้นมานี้เป็นผลทำให้จำนวนตัวแปรมีมากกว่าจำนวนสมการที่มีอยู่ ทำให้ไม่สามารถแก้สมการได้ ดังนั้น จึงจำเป็นต้องอาศัยแบบจำลองความปั่นป่วนเพื่อทำให้ปัญหาเป็นแบบปิด ซึ่งจะได้กล่าวถึงแบบจำลองนี้ ต่อไป

2.2.3 การไหลแบบปั่นป่วน

การไหลแบบปั่นป่วน คือ ค่าของตัวแปรที่เกี่ยวข้องมีความไม่คงที่มีการเปลี่ยนแปลง ตลอดเวลา เช่น ความเร็ว ดังแสดงในรูป 2.1 ค่าของความเร็วในการไหลแบบปั่นป่วนเป็นการ เปลี่ยนแปลงที่ทำให้มีความยุ่งยากในการคำนวณหาค่าตัวแปร เพื่อให้สามารถคำนวณได้ง่ายจึงให้ คุณสมบัติต่างๆ ที่พิจารณาแบ่งเป็น 2 ส่วน คือ ส่วนปริมาณเฉลี่ยไม่ขึ้นกับเวลา เช่น u v หรือ p กับส่วน ที่กระเพื่อม (Fluctuation) เช่น u v หรือ p

รูปที่ 2.1 ค่าความเร็ว *u* ในการไหลแบบปั่นป่วน

เมื่อทำการเฉลี่ยปริมาณใดๆ ในสมการควบคุมตลอดช่วงเวลาช่วงหนึ่ง ทำให้เกิดตัวแปรขึ้นมา ใหม่ ส่งผลให้มีจำนวนตัวแปรไม่รู้ค่ามากกว่าจำนวนสมการที่มีอยู่ จึงจำเป็นต้องอาศัยแบบจำลองความ ปั่นป่วน (Turbulence Model) เข้ามาช่วย เพื่อทำให้ปัญหาที่เกิดขึ้นเป็นปัญหาแบบปิด (Close Problem) ให้สามารถหาผลเฉลยได้

สมการบังคับของการไหลแบบปั่นป่วน สำหรับของไหลที่อัดตัวไม่ได้ มีอุณหภูมิคงที่และค่า สัมประสิทธิ์ความหนืดสัมบูรณ์มีค่าคงที่ ดังนี้

สมการความต่อเนื่อง

$$\frac{\partial}{\partial x_i}(\rho u_i) = 0 \tag{2.18}$$

สมการนาเวียร์-สโตคส์

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial (\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x_i} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$
(2.19)

จากการสมมุติให้ตัวแปรต่างๆ สามารถแบ่งออกเป็นส่วนของค่าเฉลี่ยและส่วนของการ กระเพื่อม ตัวอย่างเช่น ตัวแปรใดๆ φ แบ่งออกเป็น

$$\phi = \overline{\phi} + \phi' \tag{2.20}$$

จากนั้นทำการเฉลี่ยในช่วงเวลาหนึ่ง (Time-Averaging) จะได้

$$\phi(x) = \lim_{T \to \infty} \frac{1}{T} \int_{t}^{t+T} \phi(x,t) dt$$
(2.21)

ซึ่งเมื่อทำการเฉลี่ยแล้วจะทำให้ค่าเฉลี่ยในส่วนของการกระเพื่อมมีค่าเป็นศูนย์และจะได้ ค่าเฉลี่ยของผลคูณทั้งสองตัวแปรเป็น

$$\left(\overline{\phi\beta} = \overline{\phi\beta} + \overline{\phi'\beta'}\right)$$
(2.22)

เมื่อแทนค่าตัวแปรต่างๆ ด้วยผลรวมของค่าเฉลี่ยและส่วนของการกระเพื่อม แล้วทำการเฉลี่ย ในช่วงเวลาหนึ่ง จะได้สมการบังคับเป็น

สมการความต่อเนื่องสำหรับค่าเฉลี่ยในช่วงเวลา

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{2.23}$$

สมการนาเวียร์-สโตคส์ สำหรับค่าเฉลี่ยในช่วงเวลา

$$\frac{\partial \rho \overline{u}_{i}}{\partial t} + \frac{\partial \rho \overline{u_{i}u_{j}}}{\partial x_{j}} = -\frac{\partial \overline{p}}{\partial x} + \frac{\partial}{\partial x_{i}} \left[\mu \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{j}}{\partial x_{i}} \right) \right] + \frac{\partial \tau_{ij}}{\partial x_{j}}$$
(2.24)

สมการนาเวียร์-สโตคส์จากการเฉลี่ยของเรย์โนลด์ เป็นสมการที่มีรูปแบบคล้ายคลึงกับสมการ นาเวียร์-สโตคส์ เพียงแต่มีเทอมของค่าความเค้นของเรย์โนลด์ (Reynolds Stress) เพิ่มขึ้นมาในสมการ ซึ่งเป็นผลมาจากการไหลที่เป็นแบบปั่นป่วน เทอมความเค้นของเรย์โนลด์ที่เพิ่ม ขึ้นมานี้เป็นผลทำให้จำนวนตัวแปรมีมากกว่าจำนวนสมการที่มีอยู่ทำให้ไม่สามารถแก้สมการได้ ดังนั้นจึง จำเป็นต้องอาศัยแบบจำลองความปั่นป่วนเพื่อทำให้ปัญหาเป็นแบบปิด ซึ่งจะได้กล่าวถึงแบบจำลองนี้ ต่อไป

2.2.4 แบบจำลองความปั่นป่วน

การหาผลเฉลยของสมการความต่อเนื่องและสมการนาเวียร์-สโตคส์จากการเฉลี่ยของเรย์-โนลด์ (RANS) ต้องอาศัยแบบจำลองความปั่นป่วนในการคำนวณหาค่าความเค้นจากเรย์โนลด์ ซึ่งจะช่วย ให้ไม่ต้องหาค่าของความกระเพื่อม แต่จะหาเฉพาะค่าเฉลี่ยเท่านั้น การเลือกใช้แบบจำลองความปั่นป่วน จะต้องเลือกให้เหมาะสมกับพฤติกรรมการไหลที่เกิดขึ้น จึงจะสามารถคำนวณได้อย่างแม่นยำ ซึ่งจะใช้ ระยะเวลาน้อยที่สุด แบบจำลองความปั่นป่วนที่ใช้มีหลายแบบ เช่น แบบจำลองความปั่นป่วน $k-\mathbf{\mathcal{E}}$ แบบจำลองความปั่นป่วน RAG $k-\mathbf{\mathcal{E}}$ แบบจำลองความปั่นป่วน The Shear-Stress Transport (SST) แบบจำลองความปั่นป่วน Reynolds Stress Model (RSM) เป็นต้น และในหัวข้อนี้จะกล่าวถึง แบบจำลองที่นำมาใช้สำหรับงานวิจัยนี้ คือ แบบจำลองความปั่นป่วน $k-\mathbf{\mathcal{E}}$ เป็นแบบจำลองความ ปั่นป่วนที่นิยมใช้กันแพร่หลาย เป็นแบบจำลองที่สร้างขึ้นโดย Launder and Spalding ซึ่งจะใช้ สมมุติฐานของบูสซิเนส (Boussinesq Hypothesis) เพื่อประมาณค่าความเค้นของเรย์โนลด์ ดังนี้

$$\tau_{ij} = -\rho \overline{u'_i u'_j} = \mu_t \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] - \frac{2}{3} \rho k \delta_{ij}$$
(2.25)

เมื่อ คือพลังงานจลน์ของความปั่นป่วน (Turbulent Kinetic Energy)

$$k = \frac{1}{2}u'_{i}u'_{j} = \frac{1}{2}\left(\overline{u'^{2}} + \overline{v'^{2}} + \overline{w'^{2}}\right)$$
(2.26)

 μ_t คือค่าความหนืดของความปั่นป่วน (Turbulent Eddy Viscosity)

$$\mu_t = \rho C_\mu \frac{k^2}{\varepsilon} \tag{2.27}$$

โดยที่ **ɛ** คือ อัตราการสลายตัวของความปั่นป่วน (Turbulent Dissipation Rate) *cµ* คือ ค่าคงที่ รูปแบบสมการที่ใช้สำหรับแบบจำลองความปั่นป่วน *k* -**ɛ** มีดังนี้

2.2.2.2 สมการพลังงานจลน์ของความปั่นป่วน

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k - \rho \varepsilon$$
(2.28)

2.2.2.3 สมการของอัตราการสลายตัวของความปั่นป่วน

$$\frac{\partial}{\partial t}(\rho\varepsilon) + \frac{\partial}{\partial x_i}(\rho\varepsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_i}{\sigma_e} \right) \frac{\partial\varepsilon}{\partial x_j} \right] + C_{1\varepsilon} \frac{\varepsilon}{k} G_k - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k}$$
(2.29)

เมื่อ σ_k และ σ_ϵ คือ Prandtl Number ของการไหลแบบปั่นป่วน สำหรับ k และ ตามลำดับ G_k คือเทอมการสร้างความปั่นป่วน (Turbulent Production)

$$G_{k} = -\tau_{ij} \frac{\partial \overline{u}_{i}}{\partial x_{j}}$$
(2.30)

เมื่อประยุกต์ใช้สมมุติฐานของบูสซิเนสจะได้ว่า

$$G_k = \mu_t S^2 \tag{2.31}$$

เมื่อ คือ เทนเซอร์ความเครียด (Train Tensor) หาได้จาก

$$S = \sqrt{2S_{ij}}S_{ij} \tag{2.32}$$

และ S_{ij} คืออัตราความเครียดเฉลี่ย (Mean Strain Rate) โดย

$$S_{ij} = \frac{1}{2} \left[\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right]$$
(2.33)

สำหรับค่าคงที่ในแบบจำลองความปั่นป่วน ซึ่งได้มาจากการทดลองต่างๆ ได้แก่

$$C_{1\varepsilon} = 1.44, \quad C_{2\varepsilon} = 1.92, \quad C_{\mu} = 0.09, \quad \sigma_{k} = 1.0, \quad \sigma_{\varepsilon} = 1.3$$

2.3 ทฤษฎีการถ่ายเทความร้อน

2.3.1 รูปแบบการถ่ายเทความร้อน (Modes of heat transfer)

การถ่ายเทความร้อนแบ่งออกเป็นสามลักษณะได้แก่ การนำความร้อน การพาความร้อน และการแผ่ความร้อน

1 การนำความร้อน (Heat conduction)

การนำความร้อนคือกระบวนการที่ความร้อน(พลังงานที่เคลื่อนที่ด้วยอิทธิพลของอุณหภูมิที่ แตกต่าง)เคลื่อนที่ผ่านตัวกลางชนิดเดียวหรือหลายชนิดซึ่งมีอุณหภูมิต่างกัน จากอุณหภูมิสูงไปยัง อุณหภูมิต่ำกว่า โดยโมเลกุลของตัวกลางที่เป็นของแข็งทึบแสงหรือเป็นของไหลที่อยู่นิ่ง การนำความ ร้อนจะเกิดได้ดีและดากในโลหะเพราะจะมีโมเลกุลที่เล็กเคลื่อนที่ได้ด้วยอัตราการถ่ายเทความร้อนโดย การนำความร้อนโดยสามารถหาได้โดยอาศัย Fourier's law ซึ่งเขียนเป็นรูปสมการได้ดังนี้

$$q_x = -ka\frac{dt}{dx} \tag{2.34}$$

เมื่อ q_x คือ อัตราการนำความร้อนในทิศทาง x (W)

a คือ อัตราการนำความร้อนในทิศทางตั้งฉากกับ x (m²)

k คือ ค่าการนำความร้อนของวัสดุ (Tharmal conductivity)(W / m.K))

<u>dT</u> ส_x คือ เกรเดยนต์ของอุณหภูมิ ณ จุดที่พิจารณา (K / m)

ค่าการนำความร้อนเป็นสมบัติของวัสดุซึ่งสามารถหาได้จากตารางหรือแผนภูมิในกรณีที่รู้ รายละเอียดของวัสดุที่เกี่ยวข้อง ในกรณีที่ไม่รู้รายละเอียดที่เกี่ยวข้องโดยครบถ้วนก็อาจต้องหาค่าการ นำความร้อนโดยการทดลองซึ่งโดยทั่วไปโลหะจีค่าการนำความร้อนสูงกว่าอโลหะ

2 การพาความร้อน (Heat convection)

การพาความร้อนเป็นการถ่ายเทความร้อนที่เกิดจากการเคลื่อนพาของไหลโดยเฉพาะอย่างยิ่ง การถ่ายเทความร้อนระหว่างพื้นผิวของของแข็งกับของไหลที่พัดผ่านบนพื้นผิวของของแข็งนั้น อัตรา การพาความร้อนสารถคำนวณได้จากการใช้กฎของนิวตัน (Newton's law of cooling)

$$q = ah(T_w - T_f) \tag{2.35}$$

เมื่อ

- *q* คืออัตราการพาความร้อน (W)
- **a** คือพื้นที่ของการพาความร้อน (m²)
- *h* คือสัมประสิทธิ์การพาความร้อน (W / m².K)
- T_w คืออุณหภูมิพื้นผิวของของแข็ง (K)
- T_f คืออุณหภูมิของของไหล (K)

การพาความร้อนสารถแบ่งตามลักษณะการไหลได้สองแบบคือ

-การพาความร้อนแบบบังคับ (Forced convection) คือการถ่ายเทความร้อนระหว่างผิว ของของแข็งและของไหล โดยถูกของไหลบังคับให้ไหลไปตาช่องทางโดยแรงภายนอก(เช่น ใบพัดลม แบบปั้ม) ทั้งแบบไหลภายในท่อ (Internal flow) และไหลภายนอกท่อ (External flow)

-การพาความร้อนแบบอิสระ (Free convection) เกดขึ้นเมื่อการเคลื่อนที่ของของไหลไม่ได้ เกิดจากการบังคับโดยกลไกจากภายนอก แต่เกิดขึ้นเองภายในของของไหลจากการผลักดันของแรง ลอยตัวนี้เป็นผลจากความแตกต่างของความหนาแน่นในของไหลซึ่งเกิดจากความแตกต่างของอุณหภูมิ อีกต่อหนึ่ง กล่าวคือเมื่อมีการถ่ายเทความร้อนระหว่างพื้นผิวของแข็งกับของไหล ทำให้อุณหภูมิของ ของไหลไม่เท่ากันส่ำเสมอ เช่น ในการให้ความร้อนแก่ของไหลจากพื้นผิวให้ความร้อนนั้น ของไหลที่ อยู่ติดกับผิวจะมีอุณหภูมิสูงขึ้น ทำให้ความหนาแน่นลดลงจึงลอยตัวขึ้น ของไหลส่วนอื่นที่มีอุณหภูมิต่ำ กว่าจะเคลื่อนที่เข้าแทน ทำให้เกิดการเคลื่อนที่ของของไหลขึ้น ค่าสัมประสิทธิ์การพาความร้อนมีความ แตกต่างกัน ซึ่งสัมประสิทธิ์การพาความร้อนแบบบังคับมีค่าสูงกว่าค่าสัมประสิทธิ์การพาความร้อนแบบ อิสระและสัมประสิทธิ์การพาความร้อนในของเหลวจะมีค่าสูงกว่ามาก ซึ่งเป็นผลโดยตรงของความ หนาแน่น นอกจากนี้การถ่ายเทความร้อนในขณะที่มีการเปลี่ยนสถานะ เช่น จากของเหลวกลายเป็น ไอ(การเดือด)หรือจากไอกลายเป็นของเหลว(การควบแน่น)จะมีค่าสัมประสิทธิ์การพาความร้อนสูงมาก เมื่อเทียบกับกรณีที่ไม่มีการเปลี่ยนสถานะ

3 การแผ่รังสี (Radiation)

ในการถ่ายเทความร้อนโดยการแผ่รังสีความร้อนนั้น เป็นการส่งความร้อนไปในรูปของ เคลื่อนแม่เหล็กไฟฟ้าซึ่งเคลื่อนที่ด้วยความเร็วแสง การแผ่รังสีความร้อนสามารถผ่านสุญญากาศได้ ซึ่ง ต่างจากการนำความร้อนและการพาความร้อนที่จะต้องอาศัยตัวกลางในการถ่ายเทความร้อนพลังงาน การแผ่รังสีที่ปลดปล่อยจากวัสดุสามารถคำนวณได้จาก Steafun - Boltzman's law คือ

$$q_{rad} = A \varepsilon \sigma T^4$$

(2.36)

เมือ	q_{rad}	คืออัตราการเปล่งพลังงานรังสี (W)
	А	คือพื้นที่ผิวที่เปล่งพลังงานรังส (m²)
	Е	คือสภาพการเปล่งรังสีของพื้นผิวมีค่าระหว่าง 0 ถึง 1
	σ	คือค่าคงที่ที่สเฟาน–โบลท์สามานน์ มีค่าเท่ากับ 5.67 x 10 ⁻⁸ (W / m ² .K ⁴)
	Т	คืออุณหภูมิของพื้นผิว (K)

จะเห็นได้วาอัตราการเปล่งพลังงานรังสีเป็นฟังก์ชั่นของอุณหภูมิยกกำลังสี่ ตามปกติการแผ่ รังสีความร้อนจะมีค่าน้อยตัดทิ้งได้ เว้นแต่เมื่อพื้นที่ผิวมีอุณหภูมิสูงมาก การแผ่รังสีมีความสำคัญ เช่นกันในระบบอุณหภูมิต่ำมากๆ ซึ่งได้มีการทำให้เป็นสุญญากาศเพื่อขจัดการนำความร้อนและการพา ความร้อน

2.4 ทฤษฎีการเผาไหม้

ในการคำนวณการเผาไหม้จะหาจากปริมาณของเชื้อเพลิง สำหรับเชื้อเพลิงแข็งและเชื้อเพลิง เหลวจะที่มวล 1 kg และสำหรับเชื้อเพลิงก๊าซใช้ที่ 1 m_N^3 เป็น หน่วย m_N^3 หมายถึงปริมาตรที่สภาวะที่ ความดัน 0.1013 MPa หรือที่ความดัน 1 บรรยากาศ อุณหภูมิ 0°C หรือ 273.15 °K แสดงปริมาณ อากาศหรือปริมาณก๊าซเชื้อเพลิงต่างๆ แล้วจะสามารถกำหนดปริมาณสัมบูรณ์ของก๊าซเหลวนั้นได้ ซึ่ง ง่ายต่อการนำไปใช้งาน

ในเชื้อเพลิงแข็งและเชื้อเพลิงเหลว จะแสดงปริมาณสัดส่วนโดยมวล kg/kg_f) ของคาร์บอน ไฮโดรเจน กำมะถัน ออกซิเจน ไนโตรเจน ความชื้น และขี้เถ้าในเชื้อเพลิงด้วย C, H, S, O, N, w, a ตามลำดับ

กรณีของเชื้อเพลิงก๊าซ แสดงสัดส่วนโดยปริมาตร m_N^3 / m_{N-f}^3 ของคาร์บอนมอนอกไซด์ ไฮโดรเจน ก๊าซไฮโดรคาร์บอน ออกซิเจน ไนโตรเจน คาร์บอนไดออกไซด์ไอน้ำฯลฯ ซึ่งเป็นองค์ประกอบ ด้วย CO, H2 , CmHn , O2, N2, CO2, H2O ตามลำดับ

$$CO + H_2 + \sum C_m H_n + O_2 + N_2 + CO_2 + H_2O = 1$$

สมการที่แสดงความสัมพันธ์เชิงปริมาณที่เกิดขึ้นทั้งก่อนและหลังปฏิกิริยาเผาไหม้เรียกว่า สมการปฏิกิริยาเผาไหม้ เช่น ไฮโดรเจนและออกซิเจน เมื่อเกิดการเผาไหม้จะได้ไอน้ำ ซึ่งได้ตามสมการ ต่อไปนี้

ปฏิกิริยาในห้องเผาไหม้ H2และ O2 จะไม่เปลี่ยนเป็น H2O ทั้งหมดทันทีแต่จะเกิดขึ้นเมื่อ ผ่านกระบวนการทำให้เกิดปฏิกิริยาพื้นฐานจนได้ H2 O ในขณะเดียวกันก็จะเกิดปฏิกิริยาที่ H2 O สลายตัวย้อนกลับกลายเป็น H2 กับ O2 ดังนั้น H2, O2 และ H2O จะอยู่ด้วยสัดส่วนค่าหนึ่งซึ่ง ขึ้นอยู่กับอุณหภูมิในสภาวะสมดุล เคมี โดยทั่วไปสัดส่วนของผลิตภัณฑ์ต่อสารตั้งต้นจะมีค่าที่สูงมาก หากอุณหภูมิของก๊าซไม่ทำให้เกิดการเผาไหม้

2.4.1 ปฏิกิริยาการเผาไหม้

ปฏิกิริยาเผาไหม้ที่ดีนั้นจะต้องมีเป็นการเกิดปฏิกิริยาที่มีอุณหภูมิสูงและมีการเคลื่อนที่ของ ความเร็วสูงจะประกอบไปด้วยอะตอมและอนุมูลอิสระที่มีคุณสมบัติของการเกิดปฏิกิริยาได้อย่างรวดเร็ว อิทธิพลทางกลศาสตร์ของก๊าซ คือ ปฏิกิริยาการเผาไหม้ที่เกิดกระบวนการแล้วได้ผลลัพธ์เป็นปฏิกิริยา คายความร้อนในสถานะก๊าซ ไม่ว่าเชื้อเพลิงจะเป็นของแข็งหรือของเหลว เมื่อเกิดการเผาไหม้จะ กลายเป็นไอ หลังจากนั้นจะทำปฏิกิริยาคายความร้อนในสถานะก๊าซที่เกิดขึ้นในก๊าซเชื้อเพลิงกับสาร ออกซิเดชั่น เชื้อเพลิงไม่ว่าจะเป็นก๊าซ ของเหลว หรือของแข็งจะประกอบด้วยอะตอมของ C, H, O ที่ทำ พันธะกัน ในรูปแบบต่างๆ อะตอมเหล่านี้จะทำปฏิกิริยากับออกซิเจนอย่างเร็ว ทำให้เกิดแสงและความ ร้อน จากการทำปฏิกิริยาออกซิเดชั่น และเชื้อเพลิงจะกลายเป็น CO2, H2O ซึ่งแล้วแต่จุดประสงค์ของ การทำงานด้วย ปฏิกิริยาระหว่างไฮโดรเจนและออกซิเจนที่ได้สัดส่วนตามทฤษฎีที่เหมาะสมเป็นการใช้ ความร้อนที่เกิดขึ้นให้มีประสิทธิภาพมากที่สุด โดยมีสมการดังต่อไปนี้

สมการทางด้านซ้ายแสดงสภาวะก่อนทำปฏิกิริยาและด้านขวาแสดงสภาวะหลังทำปฏิกิริยา ซึ่งจากสมการพบว่ากระบวนการที่เกิดขึ้นระหว่างทางความร้อนจากเปลวไฟทำให้อุณหภูมิสูงดังนั้น H2O จึงสลายตัว (Dissociation) ทำให้เกิดสารประกอบมีทั้ง H2, O2, OH, H, O เมื่อหลุดจากเปลว-ไฟจะออกมาทำปฏิกิริยาจนหมดและจะสิ้นสุดลง จะได้สมดุลทางเคมีตามสมการ เมื่อก่อนจะถึงจุดนั้น ปฏิกิริยาจะดำเนินต่อไปโดยผ่านกระบวนการพื้นฐานจำนวนมากดังนี้

M คือโมเลกุลที่มีการแลกเปลี่ยนพลังงานทางเคมี ระหว่างการทำปฏิกิริยาเท่านั้น เรียกว่า ปฏิกริยาเบื้องต้น ซึ่งปฏิกิริยาเหล่านี้จะเกิดขึ้นแบบสองกระบวนการ คือ การเกิดปฏิกริยาไปข้างหน้าใน ทิศทางตามลูกศรและการเกิดปฏิกริยาย้อนกลับในทิศทางย้อนลูกศร ปฏิกิริยาเผาไหม้จะเกิดต่อไป เรื่อยๆ ไม่สิ้นสุด และในก๊าซเผาไหม้จะมีสารที่เป็นสื่อกลางทำให้ปฏิกิริยารวมอยู่ด้วย ปรากฏการณ์นี้ เรียกว่า ปฏิกริยาการแยกตัว หรือ การแยกตัวที่เกิดจากความร้อน และความเข้มข้นทางเคมีอยู่ในภาวะ คงที่ไม่เกิดการเปลี่ยนแปลงเมื่อเวลาเปลี่ยนไป จะได้สมดุลเคมีปรากฏการณ์จากการแยกตัวนี้สามารถ เห็นได้ชัดเจนเมื่ออุณหภูมิสูงเกิน 2000 K ปรากฏการณ์นี้ทำให้เกิดปฏิกิริยาการปลดปล่อยความร้อน จากการเผาไหม้ออกมาไม่หมดทำให้อุณหภูมิก๊าซเผาไหม้ลดต่ำลง

2.4.2 การติดไฟกับการเคลื่อนที่ของเปลวไฟ

-การติดไฟหรือการจุดไฟ ในการรักษาอุณหภูมิของห้องเผาไหม้ที่มีส่วนผสมระหว่างก๊าซให้ คงที่ และมีอุณหภูมิสูง ที่เวลาไม่มากนักจะเกิดการติดไฟหรือเกิดการระเบิด เรียกว่า การจุดระเบิด ล่าซ้า เมื่อทำการจุดประกายไฟด้วยอุณหภูมิที่สูง จะทำให้เกิดเปลวเล็กๆ ขึ้น แล้วเปลวนั้นจะเกิดการ กระจายตัวและติดไฟอันเนื่องมาจากก๊าซผสมที่อยู่ภายในห้องเผาไหม้ อุณหภูมิในการติดไฟของเซื้อเพลิง ชนิดแข็งโดยทั่วไปจะวัดด้วยเครื่องมือที่เรียกว่า Wearometer ส่วนในเชื้อเพลิงชนิดเหลวจะใช้วิธีวัดที่ เรียกว่า Crucible method และในเชื้อเพลิงชนิดสุดท้ายคือเชื้อเพลิงก๊าซจะมีวิธีในการวัดอุณหภูมิที่ เรียกว่า Bomb method

-ความเร็วในการเผาไหม้กับความเร็วของเปลวไฟ เปลวไฟมีคุณสมบัติในการเคลื่อนที่ด้วย ตัวเองโดยอาศัยการนำความร้อน การแพร่ของโมเลกุล และปฏิกิริยาเคมีที่รวดเร็วเป็นแรงขับเคลื่อน ความเร็วในการเคลื่อนที่ของเปลวไฟ ในขณะที่ความเร็วในการเคลื่อนที่ของเปลวไฟเคลื่อนที่มากระทบ กับก๊าซผสมที่ยังไม่เกิดการเผาไหม้ ความเร็วของการเผาไหม้ คือ ปริมาตรของอากาศผสมที่ยังไม่เกิด การเผาไหม้ และที่ความเร็วของเปลวไฟขึ้นอยู่กับการไหลของก๊าซ ลักษณะของเปลวไฟ เป็นความเร็ว ของการเผาไหม้ขนิด Premix ที่มีการไหลแบบราบเรียบ (Premixed-laminar flame) จะมีค่าการเผา ไหม้ที่มีประสิทธิภาพแค่ไหนนั้นขึ้นอยู่กับประเภทของเชื้อเพลิง ส่วนผสม อุณหภูมิและความดันของ อากาศ วิธีวัดความเร็วของการเผาไหม้แบบกระแสราบเรียบหลายวิธีได้แก่

- (1) แบบ Slot Burner
- (2) แบบลูกโป่งแต้มฟองสบู่
- (3) แบบ Flat flame Burner
- (4) แบบ Dual flame Burner
- (5) ແບບ Bunsen Burner

-วิธีการตรวจสอบแบบ Slot Burner จะทำการพ่นก๊าซออกมาจากหัวฉีดโดยมีอัตาส่วน ระหว่างความยาวต่อความกว้างของเปลวไฟ ทำให้เกิดเปลวไฟรูปสามเหลี่ยม และเมื่อวาดรูปจะได้ รูปการกระจายตัวของเปลวไฟเป็นทางสามเหลี่ยมดังรูปที่ 2.2 เนื่องจากความเร็วของการเผาไหม้ เท่ากับความเร็วในทิศทางตั้งฉากกับการกระจายตัวของก๊าซผสมที่ยังไม่เผาไหม้

รูปที่ 2.2 รูปแบบกระแสเปลวไฟของ Slot Burner

$$S_u = U_u sin\alpha \ [m/s] \tag{2.37}$$

ถ้าวัดความเร็วของก๊าซผสมที่ยังไม่เกิดการเผาไหม้และหามุม α ที่เกิดการก๊าซผสมทำกับ ระนาบเปลวไฟแล้ว จะสามารถหาความเร็วการเผาไหม้ได้

สำหรับวิธีการตรวจสอบแบบ Bunsen Burner จะสามารถคำนวณหาความเร็วของการเกิด เผาไหม้ได้ ซึ่งปกติความเร็วของการเผาไหม้ คือ การหาปริมาตรของก๊าซผสมที่ยังไม่เกิดการเผาไหม้ต่อ พื้นที่ในแนวระนาบของเปลวไฟเมื่อเทียบกับเวลา

$$\mathbf{S}_{\mathbf{u}} = \frac{\mathbf{V}}{\mathbf{A}_{\mathbf{f}}} \quad [\mathbf{m}/\mathbf{s}] \tag{2.38}$$

V เป็นอัตราการไหลโดยปริมาตรของก๊าซผสมที่ยังไม่เกิดการเผาไหม้ เป็นพื้นที่เปลวไฟที่ คำนวณได้จากภาพถ่ายเปลวไฟโดยนำเปลวไฟหมุนรอบแกน รูปที่ 2.3 แสดงค่าความเร็วของการเผา-ไหม้แบบกระแสราบเรียบที่วัดด้วยวิธี (1-5) หรือเลือกวิธีใดวิธีหนึ่ง ในเชื้อเพลิงประเภทไฮโดรคาร์บอน เช่น มีเทน เอทิลีนโพรเพน ที่มีอัตราส่วนที่ผสมที่เท่ากันกับอากาศ ประมาณ 1.1 ความเร็วของการเผา ไหม้จะมีประสิทธิภาพสูงสุด แต่คาร์บอนมอนอกไซด์หรือไฮโดรเจน จะมีค่าตั้งแต่ 2 ขึ้นไป คุณสมบัติ ของความเร็วในการเผาไหม้จะขาดสมดุลในสภาวะที่ไม่มีการถ่ายเทความร้อน ดังนั้น เมื่อเพิ่มอุณหภูมิ ของการเผาไหม้ในสภาวะที่ไม่มีการถ่ายเทความร้อน ความร้อนจะสูงขึ้น และความเร็วของการเผาไหม้ จะเพิ่มขึ้นด้วย นอกจากนี้กรณีที่เพิ่มความดันย่อยของอากาศจะได้ผลเช่นเดียวกัน

รูปที่ 2.3 ความเร็วของการเผาไหม้แบบกระแสราบเรียบของอากาศผสมชนิดต่างๆ

ขีดจำกัดในการเผาไหม้ เกิดจากก๊าซที่ผสมไว้แล้วจะมีช่วงความเข้มข้นที่ติดไฟได้ช่วงหนึ่งซึ่ง ขึ้นอยู่กับอุณหภูมิและความดัน หากความเข้มข้นของเชื้อเพลิงสูงกว่าหรือต่ำกว่าช่วงนั้น เปลวไฟจะไม่ ติดไฟ ค่าต่ำสุดของช่วงความเข้มข้นนี้เรียกว่า Lean flammability limit และค่าสูงสุดเรียกว่า Rich ขีดจำกัดในการติดไฟ ค่าเหล่านี้จะขึ้นอยู่กับวิธีวัดด้วย ดังนั้นจึงกำหนดวิธีวัด Flammability limit โดย นำตัวอย่างก๊าซผสมไว้แล้วใส่ลงในหลอดแก้วมีเส้นผ่านศูนย์กลางภายในไม่น้อยกว่า 50 mm โดยไม่ต้อง พิจารณาการสูญเสียความร้อนที่ผนังหลอดภายใต้ความดันบรรยากาศให้หลอดแก้วนี้ยาว 1.5-2 m และ มีปลายปิดข้างหนึ่ง ความเข้มข้นของก๊าซผสมไว้เมื่อจุดไฟที่ปลายเปิด เปลวไฟจะลามไปถึงปลายปิดอีก ด้านความเป็นไปได้ 50% จะถือว่าเป็นขีดจำกัดในการติดไฟ การที่เปลวเคลื่อนขึ้นข้างบนจะมีขีดจำกัด การติดไฟกว้างกว่าการเคลื่อนลงข้างล่าง ตัวอย่างแสดงไว้ในตารางที่ 2.1

ชื่อเชื้อเพลิง	Lean	Rich	ชื่อเชื้อเพลิง	Lean	Rich
	flammability	flammability		flammability	flammability
ไฮโดรเจน	4.0	75	บิวเทน	1.6-1.7	9.7-10
คาร์บอนมอนอกไซด์	12.5	74	1.3-บิวเทน	2.0	12
มีเทน	5.0	15	เบนซิน	1.3	7.9
อีเทน	3.0	12.4	โทลูฮีน	1.2	7.1
โพรเพน	2.1	9.5	โซลีน	1.1	6.4-6.6
บิวเทน	1.8	8.4	ไซโครเฮ	1.3	7.8
เฮกเซน	1.2	7.4	กเซน อะเซดัลดี ไฮด์	4.0	36
เอทิลีน	2.7	36	อะซีโตน	2.6	13
อะเซทิลีน	2.5	100(81)	อัมโมเนีย	15	28
โพรพิลีน	2.0	11.0		rs.	

ตารางที่ 2.1 ขีดความสามารถในการติดไฟของก๊าซผสมระหว่างเชื้อเพลิงต่างๆ-อากาศ

-ปรากฏการณ์ Quenching เมื่อนำของแข็งวางไว้ในเปลวไฟ เปลวไฟที่บริเวณใกล้พื้นผิวจะ เย็นลงและความเร็วของปฏิกิริยาลดลง ทำให้ไม่สามารถเกิดเปลวไฟต่อไปได้ ดังนั้นภายในระยะทางห่าง จากพื้นผิวค่าหนึ่งภายใต้ความดัน บรรยากาศจะมีค่าไม่เกิน 1 mm จะไม่เกิดเปลวไฟที่มองเห็นได้ด้วย ตาเปล่า ปรากฏการณ์นี้เรียกว่า Quenching กล่าวคือ เครื่องยนต์เบนซินจะทำการปล่อย ไฮโดรคาร์บอนที่ไม่เผาไหม้ ซึ่งเกิดจาก Quenching ที่มีสัดส่วนในปริมาณสูง เมื่อนำแผ่นวัสดุ 2 แผ่น วางขนานไว้ในก๊าซผสมที่ติดไฟได้โดยค่อยๆ ลดระยะห่างให้สามารถเข้าใกล้กัน เรื่อยๆ ปรากฏว่าเปลว-ไฟไม่สามารถลามผ่านช่องว่างระหว่างวัสดุไปได้ เรียกว่า Flat-plate quenching distance

2.4.3 กระบวนการเผาไหม้ในทางปฏิบัติ

2.4.3.1 การเผาใหม้ประเภทต่างๆ

การเผาไหม้เชื้อเพลิงก๊าซ แบ่งออกเป็นการเผาไหม้ด้วย Burner และการเผาไหม้ในห้องเผา ไหม้เพื่อให้เกิดเปลวไฟที่นิ่งและสม่ำเสมอโดยมีจุดประสงค์ในการเผาไหม้ก๊าซผสมที่อยู่ในห้องเผาไหม้ ด้วยการเคลื่อนที่หรือการลามของเปลวไฟ นอกจากนี้ถ้าแบ่งวิธีการเผาไหม้ได้เป็น Premixcombustion, Partial premix combustion และ Diffuse combustion โดย Premix combustion จะนำเชื้อเพลิงกับอากาศมาผสมให้เข้ากันก่อนแล้วจึงนำไปเผาไหม้ เปลวไฟจะลามไปในก๊าซ Premix เอง ในขณะที่ Diffuse combustion จะใช้สื่อเชื้อเพลิงกับอากาศ หรือก้อนเชื้อเพลิงกับก้อนอากาศ ทำ ให้เกิดการเผาไหม้ตรงที่เชื้อเพลิงกับออกซิเจน วิธีนี้จะทำให้เปลวไฟไม่เคลื่อนที่ ส่วน Partial premixcombustion จะมีลักษณะอยู่ระหว่างทั้งสองวิธี โดยใช้ก๊าซ Premix ที่มีความเข้มข้นสูงกว่า Flammability limit แทนเชื้อเพลิง นอกจากนี้การเผาไหม้ยังแบ่งตามการไหลของก๊าซใกล้ๆ เปลวไฟว่า เป็นการไหลราบเรียบหรือ ปั่นป่วน การเผาไหม้กระแสราบเรียบ และการเผาไหม้กระแสปั่นป่วน เมื่อ การไหลเปลี่ยนจากราบเรียบเป็นปั่นป่วน ลักษณะของเปลวไฟจะเปลี่ยนแปลง โดยนอกจากจะมีความ หนาแน่นเพิ่มขึ้นแล้ว ในการเผาไหม้แบบ Premix combustion ความเร็วของเปลวไฟยังเพิ่มขึ้น และ ในการเผาไหม้แบบ Diffuse combustion นั้น Combustion กรนย พื้นที่ผิวของเปลวไฟอะเพิ่มขึ้น เมื่อ จำแนการแบ่งประเภทได้ 3 ประเภท จะได้ผลดังตารางที่ 2.2 การแบ่งตัวอย่างเป็นประเภท A, B, C คือการเผาไหม้กระแสราบเรียบ แบบ Diffuse combustion ด้วย Burner การเผาไหม้กระแสปั่นป่วน แบบ Premix ในห้องเผาไหม้

วิธีแบ่งประเภท	เกณฑ์ A	เกณฑ์ B	เกณฑ์ C
	การเผาไหม้ด้วย	Premix combustion	การเผาไหม้กระแส
สัญ	Burner		ราบเรียบ
00)
	การเผาไหม้ใน	Partial premix combustion	การเผาไหม้กระแสปั่นป่วน
	ภาชนะ	Diffuse combustion	

ตารางที่ 2.2 วิธีเผาไหม้ประเภทต่างๆ

2.4.3.2 ความสามารถของอุปกรณ์เผาไหม้

เนื่องจากการเผาไหม้เชื้อเพลิงจำเป็นต้องใช้ในการเกิดปฏิกิริยา ดังนั้น ปริมาณเชื้อเพลิงที่ สามารถเผาไหม้ได้ในห้องเผาไหม้จึงมีขีดจำกัดเมื่อเทียบกับปริมาณ ความร้อนที่เกิดขึ้นในห้องเผาไหม้จะ แสดงอัตราการเกิดความร้อนในห้องเผาไหม้ ยิ่งอัตราการเกิดความร้อนยิ่งมากเท่าไหร่ห้องเผาไหม้ก็จะ เล็กลงเท่านั้น เพื่อให้เกิดข้อได้เปรียบ เชื้อเพลิงและ Burner ประเภทต่างๆ จะมีขีดความสามารถไม่ เท่ากัน ในกรณีของการเผาไหม้ด้วย Burner จะใช้อัตราการเกิดความร้อนของห้องเผาไหม้ซึ่งเป็นค่าที่ แสดงปริมาณความร้อนที่เกิดขึ้นต่อห้องเผาไหม้ที่เวลาหนึ่ง

2.4.3.3 Diffuse combustion

เปลวไฟแบบ Diffusion flame มีหลายประเภท เช่น Free jet diffusion flame (รูปที่ 2.4 (a)) ซึ่งเกิดขึ้นที่ ผิวหน้าของ fuel jet ที่พ้นจาก Burner port ออกมาในอากาศที่หยุดนิ่ง Coaxial flow diffusion flame (รูปที่ 2.4 (b)) ซึ่งเกิดขึ้นที่ผิวหน้าของกระแสเชื้อเพลิงที่พ้นออกมาจาก Burner port โดยมีแกนตรงกันกับกระแสอากาศ Counterflow diffusion flame (รูปที่ 2.4 (c)) ซึ่งเกิดขึ้นที่ผิว กระทบระหว่างกระแสเชื้อเพลิงกับกระแสอากาศที่มีทิศ ทางตรงข้ามกัน และ Countercurrent jet diffusion flame (รูปที่ 2.4 (d)) ที่เกิดขึ้นที่ผิวหน้าของ Fuel jet ที่พ่นสวน กระแสอากาศออกมา

เปลวไฟแบบ Coaxial flow diffusion flame ที่กระแสเชื้อเพลิงมีความเร็วสูงกว่ากระแส อากาศรอบๆ Free jet diffusion flame จะเรียกรวมๆ กันว่า Jet diffusion flame ซึ่งความเร็ว เชื้อเพลิง u_f ของเปลวไฟเปล่านี้จะมีผลต่อความยาว x_f ของเปลวไฟดังรูปที่ 2.5 เมื่อเชื้อเพลิงมีค่า ความเร็วไหลต่ำจะเกิดเปลวไฟราบเรียบ ที่ไม่เกิดการปั่นป่วน พบว่า

$$\mathbf{x}_{f} \propto \frac{\mathbf{u}_{f} d^{2}}{\mathbf{D}_{fu}}$$
(2.39)

d เป็นเส้นผ่านศูนย์กลางของ Burner และ D_{fu} เป็นสัมประสิทธิ์การแพร่ ความยาวของ เปลวไฟจะแปรผันตามกำลังสองของเส้นผ่านศูนย์กลางของปาก Burner และ แปรผันตามความเร็วของ เชื้อเพลิง ซึ่งสอดคล้องกับค่าที่วัดได้จริงที่แสดงในรูปที่ 2.5

เมื่อเชื้อเพลิงมีความเร็วสูง ที่ปลายเปลวไฟจะเกิดการปั่นป่วนขึ้น เมื่อกระแสเชื้อเพลิงมี ความเร็วเพิ่มขึ้น จุด Transition point ที่เริ่มเกิดการปั่นป่วนจะค่อยๆ เลื่อน ต่ำลงเข้าหาฐานของเปลว ไฟ เมื่อเชื้อเพลิงมีความเร็วอยู่ในช่วงเปลวไฟปั่นป่วนซึ่งเปลวไฟเกือบทั้งเปลวจะเปลี่ยนเป็นเปลวไฟ ปั่นป่วน จะต้องเปลี่ยนค่า D_{fu} ในสมการ (2.39) เป็นสัมประสิทธิ์การแพร่หมุนวนซึ่งมีสมการดังนี้

$$\mathcal{E} = h \mathbf{u}' \mathbf{x} \mathbf{d} \cdot \mathbf{u}_{\mathbf{f}}$$
(2.40)
สมการ (2.40) จึงได้เป็น
$$\mathbf{x}_{\mathbf{f}} \mathbf{x}_{\mathbf{f}} \mathbf{x}_{\mathbf{f}} \mathbf{x}_{\mathbf{f}} \mathbf{x}_{\mathbf{f}} = \mathbf{d}$$
(2.41)

ทั้งนี้ ł เป็นความยาวผสม และ u' เป็นระดับสัมบูรณ์ของความปั่นป่วน จากสมการนี้จะได้ ความยาวของ Diffusion flame กระแสปั่นป่วนจะไม่ขึ้นกับความเร็วของเชื้อเพลิงแต่จะแปรผันตามเส้น ผ่านศูนย์กลางของปาก Burner เท่านั้น ซึ่งก็สอดคล้องกับค่าที่วัดได้จริงในรูปที่ 2.5 2.4.3.4 การรักษาเสถียรภาพของเปลวไฟ คือการทำให้เปลวไฟมีเสถียรภาพในกระแสก๊าซ Premix ความเร็วสูง หรือการทำให้เปลวไฟ มีเสถียรภาพที่ปลายเพลิงของ Burner ซึ่งอยู่ในกระแสอากาศปฐมภูมิวิธีการรักษาเสถียรภาพทำได้โดย ใช้

(1) วิธี Flame stabilizer

- (2) วิธี Swirler
- (3) วิธี Countercurrent jet

ด้วยวิธที่กล่าวข้างต้น จะทำการสร้างบริเวณที่มีการกันกลับไหลย้อนหรือ บริเวณที่เกิด กระแสความเร็วต่ำขึ้น แล้วทำให้เปลวไฟมีเสถียรภาพในบริเวณนั้น วิธี Flame stabilizer คือการนำ วัตถุที่มีรูปร่างเป็นทรงกระบอกจานกลม ทรงกลม พื้นผิวรูปตัว V หรือพื้นผิวรูปกรวยกลม าลๆ มาตั้ง ขวางซึ่งจะกักก๊าซและอุณหภูมิสูงไว้ในบริเวณที่ปิดล้อม แล้วทำการจุดไฟให้กระแสก๊าซ Premix ความเร็วสูง ลักษณะการไหลของก๊าซรอบๆ ที่แสดงไว้ในรูปที่ 2.6 และรูปที่ 2.7 แสดง Blowoff limit ของเปลว ไฟในกรณีที่วางท่อทองแดงเส้นผ่านศูนย์กลาง D ที่ให้ความเย็นด้วยน้ำไว้ในกระแสก๊าซ premix ระหว่างโพรเพน- อากาศจะพบว่าความเร็วกระแสที่ระนาบหน้าตัดที่ตัดผ่านศูนย์กลางของ Flame stabilizer ยิ่งมีค่าสูงเท่าไหร่ อัตราส่วนที่เท่ากันทำให้เปลวไฟมีเสถียรภาพ ในช่วงที่แคบลงเป็น การนำอุปกรณ์ที่ทำให้กระแสเกิดการตีเกลียว ด้วยความดันลบบริเวณศูนย์กลาง เพื่อทำให้เปลวไฟมี เสถียรภาพ

รูปที่ 2.6 ลักษณะการไหลของก๊าซรอบๆ ตัวควบคุมเปลวจากไฟโพรเพน-อากาศ อุณหภูมิห้อง ความ ดันบรรยากาศ

รูปที่ 2.7 การจำกัดการระเบิดจาก flame stabilizer รูปทรงกระบอก

Countercurrent jet จะเป็นวิธีพ่น Jet สวนกับกระแสด้วยความสม่ำเสมอแล้วทำให้เปลวไฟ มีเสถียรภาพ บริเวณกระแสความเร็วต่ำใกล้ๆ กับจุดหยุดนิ่ง มีทั้งวิธีพ่น Fuel jet สวนกระแสอากาศ และวิธีพ่น Jet ของอากาศ หรือก๊าซเผาไหม้อุณหภูมิปกติหรืออุณหภูมิสูงสวนกับกระแสก๊าซ Premix นอกจากนี้ยังมีวิธีคว้านปากหัวพ่น Fuel jet ให้กว้างขึ้นเป็นขั้นบันได หรือวิธีบากร่องบนผนังวิธีเหล่านี้ ล้วนเป็น Flame stabilizer เช่นกัน

2.4.4 ประสิทธิภาพของการใช้เชื้อเพลิง
ประสิทธิภาพของการใช้เชื้อเพลิงสามารถหาได้จาก
$$\eta = \frac{-([(\frac{A}{F}+1)h_{prod}-(\frac{A}{F})h_A-h_F])}{LHV}$$
(2.42)เมื่อ $\frac{A}{F}$ คือ อัตราส่วนระหว่างอากาศกับเชื้อเพลิง
 h_{prod} คือ เอนทัลปีรวมของผลิตภัณฑ์
 h_A คือ เอนทัลปีของอากาศ
 h_F h_F คือ เอนทัลปีของเชื้อเพลิง
LHVศือ เอนทัลปีของเชื้อเพลิง
LHV

ประสิทธิภาพของการใช้เชื้อเพลิงแสดงถึงความสามารถในการใช้เชื้อเพลิงในการเผาไหม้ ยิ่งค่าประสิทธิภาพสูง แสดงว่าหัวเผามีความสามารถในการผสมเชื้อเพลิงกับอากาศและทำให้เกิดการ เผาไหม้ได้ดี

2.5 สมการควบคุมพื้นฐาน

โดยสมการควบคุมพื้นฐานจะประกอบไปด้วยสมการดังต่อไปนี้

1) Continuity equation:

$$\nabla(\rho\vec{v}) = 0 \tag{2.43}$$

สมการ mass balance สำหรับกลศาสตร์ของไหลโดยที่ ∇ *คือ*แกร์เดี่ยน ρ คือความหนาแน่น *บี คือเวกเตอร์ของความเร็ว*

2) RNG k – E turbulent model – k equation:

$$\frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j} \left(\alpha_k \mu_{eff} \frac{\partial k}{\partial x_j} \right) + G_k + G_b - \rho \epsilon - Y_M$$
(2.44)

เป็นสมการของ k คือ kinetic energy ซึ่งแสดงถึงการเกิดหรือการสร้างเทอร์บูแลนซ์ $\frac{\partial}{\partial x_i}(
hoku_i)$ เป็นเทอมของการไหล Convective term และ $\frac{\partial}{\partial x_j}\left(lpha_k\mu_{eff}\frac{\partial k}{\partial x_j}\right) + G_k + G_b -
ho\epsilon - Y_M$ *เป็นเทอมของ*ค่าสัมประสิทธิ์ความหนืดเทอร์บูแลนซ์ Turbulence viscosity โดยที่ μ_{eff} เป็นเทอมของของแรง Force term

3) RNG k – $\boldsymbol{\varepsilon}$ turbulent model – $\boldsymbol{\varepsilon}$ equation:

$$\frac{\partial}{\partial x_i}(\rho \varepsilon u_i) = \frac{\partial}{\partial x_j} \left(\alpha_{\varepsilon} \mu_{eff} \frac{\partial \varepsilon}{\partial x_j} \right) + C_{1\varepsilon} \frac{\varepsilon}{k} (G_k + C_{3\varepsilon} G_b) - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k} - R_{\varepsilon}$$
(2.45)

เป็นสมการของ **E** คือ Turbulent dissipation แสดงถึงการสลายเทอร์บูแลนซ์ $\frac{\partial}{\partial x_i}(\rho \varepsilon u_i)$ เป็นเทอมของการไหลหรือการเคลื่อนที่ Convective term และ $\frac{\partial}{\partial x_j} \left(\alpha_{\varepsilon} \mu_{eff} \frac{\partial \varepsilon}{\partial x_j} \right) + C_{1\varepsilon} \frac{\varepsilon}{k} (G_k + C_{3\varepsilon} G_b) - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k} - R_{\varepsilon} เป็นเทอมของค่าสัมประสิทธิ์ความหนืดเทอร์บูแลนซ์$ $Turbulence viscosity โดยที่ <math>\mu_{eff}$ เป็นเทอมของของแรง Force term

4) Ideal gas equation:

$$P = \rho RT \tag{2.46}$$

เป็นสมการแสดงสถานะของของไหลที่แปรตามความดัน ความหนาแน่น และอุณหภูมิ

5) Energy equation in term of enthalpy (H) of all species:

$$\nabla \cdot (\rho \vec{v} H) = \nabla \cdot \left(\frac{k_t}{c_p} \nabla H\right)$$
(2.47)

เป็นสมการอนุรักษ์พลังงานที่เขียนในรูปแบบของ Enthalpy $abla \cdot (\rho ec v H)$ เป็นเทอมของ การไหลที่พาพลังงานไปด้วย และ $abla \cdot \left(rac{k_t}{c_p}
abla H\right)$ เป็นเทอมของเกรเดี้ยนของเอนทาลปี ซึ่งหมายถึงการ เปลี่ยนแปลงพลังงานในเนื้อสาร

6) Radiation equation:

$$(a + \sigma_s)I(r, s) = an^2 \frac{\sigma T^4}{\pi} + \frac{\sigma_s}{4\pi} \int_0^{4\pi} I(r, s') \phi(s, s') d\Omega'$$
(2.48)

เป็นสมการในการแผ่รังสีทางความร้อน Radiation $(a + \sigma_s)I(r,s)$ เป็นเทอมของ Absorption $an^2 \frac{\sigma T^4}{\pi}$ เป็นเทอมของ Emission และ $\frac{\sigma_s}{4\pi} \int_0^{4\pi} I(r,s') \phi(s,s') d\Omega'$ เป็นเทอม ของ Scattering

7) Mean mixture fraction in term of atomic mass fraction:

$$f = \frac{Z_i - Z_{i,ox}}{Z_{i,fuel} - Z_{i,ox}}$$
(2.49)

สมการของ mixture fraction เป็นสัดส่วนของผสมระหว่างสารใดๆ ออกซิเจน และเชื้อเพลิง ซึ่งคำนวณจากสัดส่วนโมล (mass fraction)

8) Mean mixture fraction transport equation:

$$\nabla \cdot \left(\rho \vec{v} \vec{f}\right) = \nabla \cdot \left(\frac{\mu_t}{\sigma_t} \nabla \vec{f}\right)$$
(2.50)

สมการ mixture fraction สร้างเป็นสมการอนุรักษ์มวลหรือสมการการถ่ายโอนมวล $\nabla \cdot (\rho \vec{v} \vec{f})$ เป็นเทอมของการเปลี่ยนแปลงของ mixture fraction ที่ถูกการไหลพาไป $\nabla \cdot \left(\frac{\mu_t}{\sigma_t} \nabla \vec{f}\right)$ เป็น การเปลี่ยนแปลงของ mixture fraction ในสสารทั้งหมด
9) Mixture fraction variance transport equation:

$$\nabla \cdot \left(\rho \vec{v} \overline{f'^2}\right) = \nabla \cdot \left(\frac{\mu_t}{\sigma_t} \nabla \overline{f'^2}\right) + C_g \mu_t (\nabla \overline{f})^2 - C_d \rho \frac{\varepsilon}{k} \overline{f'^2}$$
(2.51)

เป็นสมการ mixture fraction variance ซึ่งคือ การแปรผันของ mixture fraction มาสร้างเป็น สมการอนุรักษ์การแปรผันมวลหรือสมการการถ่ายโอนการแปรผันมวล และเทอม $\nabla \cdot$ $(\rho \vec{v} \vec{f'})$ mixture fraction variance ที่ถูกการไหลพาไป โดยที่ $\nabla \cdot \left(\frac{\mu t}{\sigma_t} \nabla \vec{f'}\right) + C_g \mu_t (\nabla \vec{f})^2 - C_d \rho \frac{\varepsilon}{k} \vec{f'}$ เป็นเทอมการเปลี่ยนแปลงของ mixture fraction variance ในสสารทั้งหมด โดยการ คำนวณ mixture fraction และ mixture fraction variance ต้องคำนวณพร้อมกันแล้วนำค่าที่ได้มา อินติเกรทร่วมกับเอนทาลปี เพื่อให้ได้พลังงานที่เกิดจากการเผาไหม้ของสารแต่ละชนิด

2.6 สรุปสาระสำคัญจากเอกสารงานวิจัยที่เกี่ยวข้อง

้ ปัจจุบันวิธีการเผาไหม้เชื้อเพลิง โดยใช้เชื้อเพลิงเกรดต่ำเพื่อใช้ในการเผาไหม้เป็นที่ยอมรับ มากขึ้นและได้มีการศึกษาอย่างจริงจัง ทั้งทางด้านการทดลอง และแบบจำลองทางคณิตศาสตร์ในการ วิจัยนี้ผู้วิจัยได้ศึกษาค้นคว้าข้อมูลรายละเอียดต่างๆที่เกี่ยวข้องจากเอกสารตำราและงานวิจัย การศึกษา อุปกรณ์แลกเปลี่ยนความร้อนแบบท่อและระบบการทำงานในห้องเผาไหม้ จะต้องมีความเข้าใจในส่วน พื้นฐานและหลักการทำงานในเรื่องการแลกเปลี่ยนความร้อน หรือแม้แต่การถ่ายเทความร้อนและการ เผาไหม้

โดยทำการศึกษาและอ้างอิงจากงานวิจัยต่างๆที่เกี่ยวข้องเพื่อประกอบการทำงานวิจัยนี้และ ศึกษาความเป็นไปได้ของการศึกษากระบวนการในการคิด ทดสอบและวิเคราะห์ ซึ่งใช้ความน่าเชื่อถือ จากงานวิจัยต่างๆที่ผ่านมาดังนี้

Gupta.A.K.[1] พบว่า ขนาดของเปลวไฟจะเพิ่มขึ้น เมื่อลดความเข้มข้นของ O_2 ใน อากาศและเพิ่มอุณหภูมิของอากาศ นอกจากนั้นระยะห่างระหว่างเปลวไฟกับหัวฉีดเชื้อเพลิงจะลดลง เมื่อเพิ่มอุณหภูมิของอากาศ การเกิด NO_x ที่อากาศอุณหภูมิ 1150 องศาเซลเซียส ลดลงจาก 2800 ppm ที่ความเข้มข้นของ O_2 ในอากาศร้อยละ 21 เหลือ 40 ppm ที่ความเข้มข้นของ O_2 ในอากาศร้อยละ 2 เปอร์เซ็นต์

Hasegawa T. และ Tanaka R.[2] ทำการทดลองการเผาไหม้แบบ HiTAC โดยใช้ อากาศอุณหภูมิ 1000 อาศาเซลเซียส LPG เป็นเชื้อเพลิง ใช้ก๊าซ N₂ เจือจางอากาศให้มีความ เข้มข้นของ O₂ ร้อยละ 21 และร้อยละ 3 พบว่า ที่ความเข้มข้นของ O₂ ร้อยละ 21 เปลวไฟมี ขนาดเล็ก สีเหลือง มีความสว่างมาก แต่มีความเข้มข้นของ O₂ ร้อยละ 3 เปลวไฟจะมีขนาดใหญ่ สีเขียว มีความสว่างน้อยและอุณหภูมิของเปลวไฟมีความสม่ำเสมอกว่า

Gouldin, Depsky and Lee [3] แสดงผลการวิเคราะห์การเกิดการไหลแบบเวอร์เทค (ToroidalVortex) ของการไหลหมุนวนเป็นเกลียวแบบหมุนตามกันคือ การทดลองแบบมีและไม่มี ปฏิกิริยาการเผาไหม้ ของการฉีดเชื้อเพลิงและอากาศแบบหมุนวนทางเดียวและหมุนวนทางสวนทางกัน

ภายในห้องเผาไหม้ โดยการเผาไหม้เป็นแบบที่มีการผสมผสานระหว่างอากาศและเชื้อเพลิงก่อน (Premixed) ได้ผลว่าบริเวณการไหลแบบเวอร์เทคเกิดขึ้นเมื่อเป็นการการฉีดเชื้อเพลิงและอากาศแบบ เชื้อเพลิงหมุนวนสวนทางกัน แต่กลับพบว่ามีการไหลแบบเวอร์เทคเกิดขึ้นในกรณีที่การฉีดอากาศและ เชื้อเพลิงหมุนวนทางเดียวกันแบบมีปฏิกิริยาการเผาไหม้ แต่ขนาดความกว้างของบริเวณการไหลแบบ เวอร์เทคเล็กกว่ากรณีที่หมุนวนสวนทางกันและมีค่าพลังงานจลน์ของความปั่นป่วน(Turbulence Kinetic Energy K) ต่ำกว่าบริเวณการไหลแบบเวอร์เทคเกิดขึ้นในการหมุนวนทั้งหมุนวนตามกันและ สวนทางกัน และได้สรุปว่าที่เป็นเช่นนี้เพราะปัจจัยที่มีอิทธิพลที่ทำให้เกิดการไหลแบบเวอร์เทคไม่ได้มี เพียงแค่ค่าความรุนแรงของการไหลแบบหมุนวนเป็นเกลียวเท่านั้น แต่ยังมีปัจจัยเรื่องรูปแบบการ กระจายความเร็ว (Velocity Profile) ของความเร็วตามแนวแกนการไหล (U) และความเร็วตามแนว เส้นสัมผัส (W) ที่บริเวณทางออกของ Nozzle อีกด้วย เช่นถ้าเปรียบเทียบกระแสการไหลหมุนวนของ ้ค่าหนึ่งที่มีความรุนแรงของการไหลแบบหมุนวนเป็นเกลียวเท่ากัน แต่มีรูแบบการกระจายความเร็ว ้ต่างกัน ผลของบริเวณตามแนวแกนการไหลก็จะแตกต่างกัน ซึ่งถ้าเป็นเช่นนี้แล้วการผสมก็แตกต่างกัน ถึงแม้ว่าจะมีผลค่าความรุนแรงของการไหลแบบหมุนวนเป็นเกลียวซึ่งจะได้ค่าความรุนแรงของการไหล แบบหมุนวนเป็นเกลี่ยวเท่ากัน งานวิจัยนี้จึงมีจุดประสงค์ในการศึกษาระดับของค่าความรุนแรงของการ หมุนวนเป็นเกลี่ยวของกระแสอากาศกับเชื้อเพลิงต่อการผสมผสานภายในบริเวณของห้องเผาไหม้ แบบ ที่ยังไม่มีปฏิกิริยาการเผาไหม้ อันเป็นแนวทางการปรับปรุงประสิทธิภาพและเสถียรภาพของห้องเผาไหม้ โดยการปรับปรุงอากาศพลศาสตร์ของการเผาไหม้ (Combustion Aerodynamics)

Chaouki Ghenai [4] ได้ทำการศึกษาเกี่ยวกับการเผาไหม้ของเชื้อเพลิงในห้องเผาไหม้ของ เครื่องยนต์กังหันแก๊สขนาดเล็กโดยการเปรียบเทียบผลการจาลองการเผาไหม้ระหว่างการใช้เชื้อเพลิง มีเทน (CH4) กับแก๊สเชื้อเพลิงผสม (Syngas) โดยใช้รูปร่างลักษณะพื้นฐาน (Basic Geometry) ของห้อง เผาไหม้แบบทรงกระบอก (Can Type) และใช้แบบจำลองการไหลปั่นป่วนกับแบบจำลองการเผาไหม้ เป็น Standard k-epsilon และ Non-premixed Combustion

รูปที่ 2.8 แสดงรูปร่างลักษณะพื้นฐาน (Basic Geometry) ของห้องเผาไหม้แบบทรงกระบอก ของ Chaouki Ghenai [4] โดยพบว่าในกรณีที่กำหนดอัตราการไหลเชื้อเพลิงเท่ากันปริมาณคาร์บอนไดออกไซด์ (CO₂) ที่เกิดขึ้นในกรณีที่ใช้เชื้อเพลิงผสมทุกชนิดที่นำมาศึกษามีค่าน้อยกว่าของมีเทน แต่เมื่อปรับอัตราการไหล ของเชื้อเพลิงเพื่อให้ได้พลังงานที่เท่ากันพบว่ามีเชื้อเพลิงผสม Schwarze Pumpeเพียงชนิดเดียวที่ยังคง มีค่าปริมาณคาร์บอนไดออกไซด์ (CO₂) น้อยกว่ามีเทนแต่เมื่อปรับอัตราการไหลของเชื้อเพลิงเพื่อให้ได้ พลังงานที่เท่ากันพบว่ามีเชื้อเพลิงผสม Schwarze Pumpeเพียงชนิดเดียวที่ยังคงมีค่าปริมาณ คาร์บอนไดออกไซด์ (CO₂) น้อยกว่ามีเทน ตามภาพ

รูปที่ 2.9 แสดงปริมาณคาร์บอนไดออกไซด์โดยเฉลี่ยที่ทางออกจากงานวิจัยของ Chaouki Ghenai [4]

งานวิจัยของ Chaouki Ghenai [4] ตามภาพที่ 3โดยมีบริเวณสีแดงที่แสดงถึงอุณหภูมิสูงสุด ที่เกิดจาการเผาไหม้ที่มีอุณหภูมิประมาณ 2,200 เคลวิน ซึ่งสอดคล้องกับอุณหภูมิของเปลวไฟทาง ทฤษฎี(Adiabatic Flame Temperature)

ร**ูปที่ 2.10** แสดงผลการกระจายตัวของอุณหภูมิจากงานวิจัยของ Chaouki Ghenai [4]

ภาพแสดงการเปรียบเทียบอุณหภูมิ และปริมาณคาร์บอนไดออกไซด์ที่แกนกลางของห้องเผา ไหม้จากการจำลองกรณีพื้นฐาน (Base Case) ด้วยโปรแกรม ANSYSFLUENT

Firoj, Nikul and Mihir [5] ได้ทำการจำลองการเผาไหม้เพื่อศึกษาผลกระทบของการ เปลี่ยนตัวแปรในห้องเผาไหม้ เช่น อัตราส่วนสมมูล มุมของอุปกรณ์สร้างการไหลวน (Swirler) และที่รู อากาศเจือจาง โดยใช้รูปร่างลักษณะและแบบจำลองการไหลปั่นป่วนกับแบบจำลองการเผาไหม้เดียวกัน กับงานวิจัยของ Chaouki Ghenai [4] โดยพบว่าที่มุมของอุปกรณ์สร้างการไหลวน (Swirler) เท่ากับ 60 องศา จะทำให้เกิดไนโตรเจนออกไซด์และอุณหภูมิที่ทางออกน้อยกว่า เมื่อเทียบกับที่มุม 30 และ 45 องศา ส่วนในกรณีที่เพิ่มอัตราส่วนสมมูลจะทำให้อุณหภูมิและการเกิดไนโตรเจนออกไซด์เพิ่มขึ้นตาม ปริมาณเชื้อเพลิงที่เพิ่มมากขึ้น และในกรณีเลื่อนตำแหน่งของรูอากาศเจือจางไปข้างหน้าหรือไปข้างหลัง 10 มิลลิเมตร ไม่ได้ส่งผลต่ออุณหภูมิและการเกิดไนโตรเจนออกไซด์มากนักตามภาพ

Rabou, et al. [6] ได้ทำการทดลองวัดประสิทธิภาพเครื่องยนต์กังหันแก็สที่ใช้เชื้อเพลิงชีว-มวล แต่เนื่องด้วยข้อจำกัดของการทดลองจะสามารถวัดค่าที่ใช้คำนวณประสิทธิภาพของเครื่องยนต์ได้ ในตำแหน่งที่ติดอุปกรณ์วัดค่าไว้เท่านั้น จึงได้มีการนำวิธีการคำนวณด้วยคอมพิวเตอร์มาช่วยในการ คำนวณ ซึ่งวิธีการคำนวณนี้มีชื่อว่า Computational Fluid Dynamic (CFD) โดยวิธีการทาง CFD นี้จะ สามารถคำนวณและจำลองพฤติกรรมการไหลและการเผาไหม้ที่มีความต่อเนื่องได้

Farzad and Hamed [7] ได้นำวิธีการทาง CFD มาสร้างแบบจำลองทางคณิตศาสตร์เพื่อ สังเกตพฤติกรรมการเผาไหม้ของ Burnerโดยพบว่าการใช้แบบจา ลองแบบ β-PDF จำลองผลการ กระจายตัวของอุณหภูมิได้ดีกว่าแบบจา ลองแบบ Eddy Dissipation

Martin Miltner, et al. [8] ได้นำวิธีการทาง CFD มาสร้างแบบจำลองทางคณิตศาสตร์เพื่อ สังเกตพฤติกรรมการเผาไหม้ของห้องเผาไหม้ที่ใช้ในการทดลอง โดยข้อดีของวิธีการทาง CFD คือช่วย ทำนายผลการทดลองเพื่อให้สามารถจำกัดขอบเขตในการทดลองให้แคบลงได้ Eman Tora, Erik Dahlquist [9] ได้ศึกษาวิธีการสร้างแบบจำลองทางคณิตศาสตร์เพื่อ จำลองการไหลของของมวลและการกระจายความร้อนภายในเตาเผาไหม้ เพื่อให้เกิดการสมดุลในการใช้ งาน รวมถึงการกำจัดตัวแปรต่างๆที่มีผลต่อการใช้งาน โดยมีการหาค่าตัวแปรในด้านความร้อนและ อุณหภูมิที่มีผลต่อการเผาไหม้ภายในห้องเผาไหม้ และส่งผลต่อประสิทธิภาพการใช้งานและทำการ ปรับปรุงให้เหมาะสม ทั้งในเรื่องของอุณหภูมิ พลังงานความร้อน เชื้อเพลิง ความชื้นในอากาศ และ ปริมาณคาร์บอนที่เกิดขึ้นภายในเตาเผา

รูปที่ 2.12 ภาพมุมต่างๆของเตาที่สร้างแบบจำลองทางคณิตศาสตร์

รูปที่ 2.13 ภาพแสดงรูปร่างทางความร้อน

รูปที่ 2.15 แสดงรูปร่างของคาร์บอนที่จะเกาะภายในเตา

บทที่ 3 วิธีดำเนินการวิจัย

3.1 บทนำ

ในการทดลองศึกษาหรือทำงานวิจัยนั้น สิ่งสำคัญคือการเตรียมความพร้อมในด้านข้อมูลอย่าง ละเอียด และระเบียบการวางแผนการดำเนินงานอย่างถูกต้องรวมไปถึง เครื่องมือที่ใช้ในการดำเนินงาน จะต้องมีความเที่ยงตรง และแม่นยำที่ใช้สำหรับการทำการทดลองตามแผนการดำเนินงาน

กิจกรรม	ม.ค.	ก.พ.	มี.ค.	ເນ.ຍ.	พ.ค.	ນ.ຍ.	ก.ค.	ส.ค.	ก.ย.	ต.ค.	พ.ย.	ธ.ค.
1) ศึกษารวบรวมข้อมูลเครื่อง กำเนิดไอน้ำ	•	State State										
2) ออกแบบเขียนแบบห้องเผ้าไหม้ เครื่องกำเนิดไอน้ำ ด้วยโปรแกรม คอมพิวเตอร์			G									
3) สร้างแบบจำลองทาคณิตศาสตร์		28	AC			D						
4) วิเคราะห์ผลจากแบบจำลองทาง คณิตศาสตร์			N		R							
5) ทดลองการเผาไหม้ ของห้องเผา ไหม้เครื่องกำเนิดไอน้ำ							Sh?			•		
6) เปรียบเทียบผลการสร้าง แบบจำลองคณิตศาสตร์ กับการ ทดลองจริงในการทดสอบ	Ner??	263	100 m		07 198	El Contraction de la contracti				◀		
7) สรุปผลการวิจัยและทำรายงาน การวิจัย			010									•

3.2 แผนการดำเนินงานวิจัย

ผังงานการสร้างแบบจำลองทางคณิตศาสตร์ของเครื่องกำเนิดไอน้ำแบบท่อขดและการทดลอง

3.2.1 ศึกษาค้นคว้าข้อมูล

3.2.1.1 ทำการค้นคว้าหาข้อมูลจากตำราที่เกี่ยวข้อง เช่น หนังสือ การถ่ายเทความ ร้อน (Heat transfer) การไหลของของไหล (Fluid mechanics) การเผาไหม้ (Combustion) พลศาสตร์ของไหลเชิงคำนวณด้วยระเบียบวิธีไฟไนต์วอลุม

3.2.1.2 สืบค้นข้อมูลจากอินเตอร์เน็ต ทบทวนงานวิจัยในเว็บไซต์ที่เกี่ยวข้อง เช่น (<u>www.scidirect.com</u>)

3.2.1.3 สอบถามและปรึกษาขอคำแนะจากผู้เชี่ยวชาญเฉพาะด้าน

3.2.2 การสร้างแบบจำลองทางคณิตศาสตร์ของห้องห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อ ขด (STSG)

3.2.2.1 ออกแบบเขียนแบบห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขดด้วยโปรแกร คอมพิวเตอร์

3.2.2.2 วิเคราะห์แบบจำลองสมการคณิตศาสตร์ในส่วนของห้องเผาไหม้ด้วยโปรแกรม

3.2.2.3 วิเคราะห์แบบจำลองสมการคณิตศาสตร์หาประสิทธิภาพเชิงความร้อนของ (STSG) โดยมีการจำลองหัวเผาด้วยจำนวนที่แตกต่างกัน ตั้งแต่ 1 ถึง 4 หัวเผา

3.2.3 การทดลองห้องเผาไหม้เครื่องกำเนิดไอน้ำแลลท่อขด

3.2.3.1 ในการวิจัยนี้ใช้แก๊ส LPG เป็นเชื้อเพลิงในการทดสอบและศึกษา

3.2.3.2 ทำการเขียนแบบห้องเผาไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด

3.2.3.3 ติดตั้ง และปรับแก้ห้องเผาไหม้ เพื่อการทดลอง

3.2.3.4 ทดลองการเผาไหม้ของห้องเผาไหม้

3.2.3.5 เปรียบเทียบผลที่ได้จากแบบจำลองสมการคณิตศาสตร์ของระบบการเผา ไหม้กับผลการทดลอง เพื่อตรวจสอบความถูกต้องของแบบจำลอง

3.2.3.6 สรุปผลการวิจัยและทำรายงานการวิจัย

3.3 สถานที่ทำการติดตั้งและทดสอบ

สถานที่ทำการติดตั้ง และทดสอบภาควิชาวิศวกรรมเครื่องกลคณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ตำบลคลองหก อำเภอคลองหลวง จังหวัดปทุมธานี และ สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) ฝ่ายวิศวกรรม 35 หมู่ 3 เทคโนธานี ตำบลคลองห้า อำเภอคลองหลวง จังหวัดปทุมธานี 12120

3.4 เครื่องมือและวิธีการทดลอง

- 3.4.1 เครื่องคอมพิวเตอร์ 1 เครื่อง
- 3.4.2 โปรแกรมที่ใช้ในการจำลองสมการคณิตศาสตร์
- 3.4.3 ห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด (STSG)
- 3.4.4 แอมมิเตอร์
- 3.4.5 เทอร์โมคับเปิล
- 3.4.6 Data Logger
- 3.4.7 Air Rotameter
- 3.4.8 Gas Rotameter

3.5 วิธีการทดสอบและการบันทึกผล

3.5.1 จำลองสมการทางคณิตศาสตร์แบบไฟไนต์วอลุม

3.5.2 จำลองสมการทางคณิตศาสตร์โดยวิเคราะห์อุณหภูมิ และความเร็วของการไหลที่ เกิดขึ้นภายในห้องเผาไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด โดยมีการเปรียบเทียบจำนวนหัวเผาไหม้ที่ เหมาะสมที่สุด ชุดหัวเผาแก๊ส (Burner) จากพลังงานความร้อนและอุณหภูมิที่ได้ในการเผาไหม้

3.5.3 นำผลการทดลองที่ได้จากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์มาทดสอบ ใช้งานจริงเปรียบเทียบและวิเคราะห์ผลความเป็นไปได้ทั้งในทางทฤษฎีและการปฏิบัติ เพื่อหาความ แม่นยำและสอดคล้องกันของงานวิจัย

3.6 เงื่อนไขและขอบเขตของข้อมูลในการจำลอง และทดสอบ

NI I I I I I I I I I I I I I I I I I I	เ ออที่ขนเอเหรนม คนความของขาน เม่น เหล่า เข้า ริพาหม่าเห poolio						
	Condition และใช้ในก	ารทดสอบใช้งานจริง					
จำนวน	อัตราป้อนเชื้อเพลิง LPG	อัตราป้อนอากาศ	อุณหภูมิ เชื้อเพลิง 1 PG	อุณหภูมิอากาศ			
			LFU				
(Burner)	(kg/h)	(kg/h)	(K)	(K)			
1	1.5	23.28	300	318.15			
2	0.75	11.64	300	318.15			
3	0.5	7.76	300	318.15			
4	0.375	5.82	300	318.15			

ตารางชื่ 2.1. ข้องเอชี่ใช้ในปีเคราะห์แบบเว้าอองสูงเอารูชางคณิตสาสตร์แขงเค่าใน Poundan

3.7 การวิเคราะห์ผลกระทบของ Mesh ต่อการคำนวณ

จำนวนของ Mesh ส่งผลต่อเวลาที่ใช้ในการคำนวณและผลที่ได้จากการคำนวณ โดยจำนวน Mesh ที่น้อยเกินไปจะใช้เวลาในการคำนวณน้อย แต่ผลที่ได้อาจมีความคาดเคลื่อนสูง จำนวน Mesh ที่ สูงเกินไปจะใช้เวลาในการคำนวณมาก แต่ผลที่ได้มีความแม่นยำ งานวิจัยแต่ละงานจะมีจำนวน Mesh ที่ เหมาะสมแตกต่างกัน แต่ในงานวิจันนี้กำหนด Mesh สำหรับการจำลองเป็นแบบ Tetrahedrons และ ทำการปรับ Mesh Sizing เพื่อหาค่า Mesh ที่เหมาะสม

รูปที่ 3.1 ตำแหน่งและระยะการวัดผลของอุณหภูมิ และความเร็วการไหลของการวิเคราะห์ Mesh

ร**ูปที่ 3.2** การสร้าง Mesh ที่ 1 หัวเผาไหม้

ตารางที่	3.2	การปรับค่า	Mesh	Sizing	เพื่อหา	าค่า Mesł	า ที่เหมาะสม
----------	-----	------------	------	--------	---------	-----------	--------------

Burner	No. Case	Mesh Sizing	Sta	tistics
		(m)	Nodes	Elements
	1	0.007	225,930	1,225,757
1	2	0.009	183,177	985,960
	3	0.011	165,567	889,182
	13	0.007	355,570	1,922,499
2	23	0.009	311,997	1,678,788
	3 3	0.011	294,489	1,581,472
	1	0.007	472,156	2,547,463
3	2	0.009	428,809	2,303,773
	3	0.011	411,673	2,209,202
4	1	0.007	588,973	3,170,540
	2	0.009	544,660	2,923,073
	3	0.011	527,936	2,831,252

3.8 การวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์

ขั้นตอนการใช้ FLUENT

รูปที่ 3.6 วิธีการดำเนินงานการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์

สำหรับขั้นตอนการใช้ FLUENT สามารถแบ่งเป็นขั้นตอนได้ดังนี้

- 1) กำหนด Solver เป็นแบบ Pressure Based และ และ Time เป็นแบบ Steady
- 2) เลือกใช้ Energy Equation จาก Model
- 3) เลือก Turbulent Model สำหรับการไหลเป็น RNG k-epsilon
- 4) เลือก Radiation Model โดยกำหนดแบบ Discrete Oridinates

5) เลือก Species Model การเผาไหม้เป็นแบบ Non Premixed Combustion โดย กำหนดให้เชื้อเพลิงเป็น C₃H₈ และ C₄H₁₀

6) กำหนด Boundary Condition โดยเลือก Type ของทางเข้าเชื้อเพลิงและอากาศเป็น แบบ Mass-flow-inlet และกำหนดอัตราการไหลของเชื้อเพลิง, อากาศและอุณหภูมิตามกรณีที่ศึกษา

- 7) กำหนด Solution Method เป็นแบบ SIMPLE และเลือก Second order upwind
- 8) กำหนดค่าเริ่มต้นสำหรับการจำลองโดยเลือกแบบ Hybrid Initialization
- 9) กำหนด Residual Monitors เท่ากับ 10⁻³
- 10) กำหนด Iteration บันทึกข้อมูลที่ทุกๆ 1,000 รอบ
- 11) กำหนด Calculation Iteration

3.9 การทดสอบการใช้งานจริง

นำผลที่ได้จากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ ที่ให้ค่าทางความร้อนที่ เหมาะสมที่สุด ทั้งในด้านต้นทุนและประสิทธิภาพเชิงความร้อน มาพิสูจน์ข้อเท็จจริงโดยการทดสอบ ดังต่อไปนี้

> -การทดสอบจะเดินเครื่องและเก็บข้อมูลอุณหภูมิทุก 1 นาที เก็บผลใช้เวลาที่ 180 นาที -การทดสอบจะใช้อัตราป้อนแก๊สคงที่ 1.5 kg/h

-การทดสอบจะใช้อัตราป้อนอากาศต่อเชื้อเพลิง (A/F) ที่ 15.5:1

-การวัดค่าอัตราการป้อนแก๊สจะใช้ตาชั่ง 2 ตำแหน่ง และ Gas Rotameter

-การวัดค่าอัตราป้อนอากาศจะใช้ Air Rotameter

-การวัดค่าของอุณหภูมิห้องเผ้าไหม้ทั้ง 3 จุด, ค่าของอุณหภูมิไอเสีย, ค่าของอุณหภูมิไอน้ำ, ค่าของอุณหภูมิอากาศป้อน, ค่าของอุณหภูมิบรรยากาศจะวัดโดย Thermocouple Type B และ Type K โดยบันทึกผลด้วย Data Logger

-การวัดค่าของกระแสไฟฟ้าจะใช้ Ammeter

ร**ูปที่ 3.8** Model ตำแหน่งทางเข้าอากาศ, ทางเข้าเชื้อเพลิง และทางออกไอเสีย ของแบบจำลองห้อง เผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด

รูปที่ 3.10 ตำแหน่งการวัดอุณหภูมิของการทดสอบใช้จริงกับห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด

รูปที่ 3.11 การทดสอบใช้งานจริงกับห้องเผาไหม้แบบ 3 หัวเผา

บทที่ 4 ผลการวิเคราะห์ข้อมูล

จากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบ ท่อขด (STSG) ในการวิเคราะห์ข้อมูลแบ่งเป็น 4 ตัวอย่างข้อมูล และ 1 ผลการทดสอบใช้งานจริงกับห้อง เผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด

4.1 ผลการวิเคราะห์ผลกระทบของ Mesh ต่อการคำนวณ

ร**ูปที่ 4.1** ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 1 Burner

ผลการวิเคราะห์ค่าของอุณหภูมิจากผลกระทบของ Mesh แบบ 1 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าอุณหภูมิแต่ละจุดที่ใกล้เคียงกัน และค่าอุณหภูมิ ของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m เฉลี่ยอยู่ที่ 37 °C จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการคำนวณจะเพิ่มมากขึ้นตาม จำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่ แตกต่างจากกรณี Mesh Sizing 0.007 m.

รูปที่ 4.2 ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 1 Burner

ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 1 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าความเร็วการไหลแต่ละจุดที่ใกล้เคียงกัน และค่าความเร็วการไหลของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m เฉลี่ยอยู่ที่ 4.93 m/s จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการ คำนวณจะเพิ่มมากขึ้นตามจำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่แตกต่างจากกรณี Mesh Sizing 0.007 m.

รูปที่ 4.3 ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 2 Burner

ผลการวิเคราะห์ค่าของอุณหภูมิจากผลกระทบของ Mesh แบบ 2 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าอุณหภูมิแต่ละจุดที่ใกล้เคียงกัน และค่าอุณหภูมิ ของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m เฉลี่ยอยู่ที่ 94 ℃ จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการคำนวณจะเพิ่มมากขึ้นตาม จำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่ แตกต่างจากกรณี Mesh Sizing 0.007 m.

ร**ูปที่ 4.4** ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 2 Burner

ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 2 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าความเร็วการไหลแต่ละจุดที่ใกล้เคียงกัน และค่าความเร็วการไหลของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m เฉลี่ยอยู่ที่ 4.06 m/s จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการ คำนวณจะเพิ่มมากขึ้นตามจำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่แตกต่างจากกรณี Mesh Sizing 0.007 m.

รูปที่ 4.5 ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 3 Burner

ผลการวิเคราะห์ค่าของอุณหภูมิจากผลกระทบของ Mesh แบบ 3 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าอุณหภูมิแต่ละจุดที่ใกล้เคียงกัน และค่าอุณหภูมิ ของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m. เฉลี่ยอยู่ที่ 108 ℃ จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการคำนวณจะเพิ่มมากขึ้นตาม จำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่ แตกต่างจากกรณี Mesh Sizing 0.007 m.

ร**ูปที่ 4.6** ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 3 Burner

ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 3 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าความเร็วการไหลแต่ละจุดที่ใกล้เคียงกัน และค่าความเร็วการไหลของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m เฉลี่ยอยู่ที่ 2.23 m/s จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการ คำนวณจะเพิ่มมากขึ้นตามจำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่แตกต่างจากกรณี Mesh Sizing 0.007 m.

รูปที่ 4.7 ผลการวิเคราะห์ค่าอุณหภูมิจากผลกระทบของ Mesh แบบ 4 Burner

ผลการวิเคราะห์ค่าของอุณหภูมิจากผลกระทบของ Mesh แบบ 4 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. มีค่าอุณหภูมิแต่ละจุดที่ใกล้เคียงกัน และค่าอุณหภูมิ ของ Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m. เฉลี่ยอยู่ที่ 76 °C จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการคำนวณจะเพิ่มมากขึ้นตาม จำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากผลที่ได้ไม่ แตกต่างจากกรณี Mesh Sizing 0.007 m.

ผลการวิเคราะห์ค่าความเร็วการไหลจากผลกระทบของ Mesh แบบ 4 Burner พบว่าที่ Mesh Sizing 0.007 m. กับ Mesh Sizing 0.009 m. และ Mesh Sizing 0.011 m. มีค่าความเร็วการ ไหลแต่ละจุดที่ใกล้เคียงกัน โดย Mesh Sizing 0.011 m. แต่ละจุดมีความแตกต่างจาก Mesh Sizing 0.007 m เฉลี่ยอยู่ที่ 0.28 m/s จะเห็นว่า Mesh ส่งผลต่อการคำนวณเพียงเล็กน้อย แต่เวลาที่ใช้ในการ คำนวณจะเพิ่มมากขึ้นตามจำนวน Mesh ที่เพิ่มขึ้น จากผลดังกล่าวจึงเลือกกรณีของ Mesh Sizing 0.009 m. เนื่องจากเมื่อเทียบผลการวิเคราะห์ระหว่างค่าความเร็วการไหล กับ ค่าของอุณหภูมิ กรณี Mesh Sizing 0.009 m. จึงมีความเหมาะสมที่จะนำมาวิเคราะห์

รูปที่ 4.9 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 1 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 1 หัวเผาพบว่า มีการกระจายตัวของอุณหภูมิภายในห้องเผาไหม้ไม่สม่ำเสมอ ส่งผลให้อุณหภูมิภายในห้องเผาไหม้มี อุณหภูมิที่สูงบางจุด และบางจุดมีอุณหภูมิที่ต่ำ

รูปที่ 4.10 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 1 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 1 หัวเผาพบว่า มีความเร็วการไหลของแก๊สสูงในช่วงหน้าหัวเผาไหม้ โดยมีความเร็วในการไหลอยู่ที่ 16.02 m/s ส่งผล ให้อุณหภูมิภายในห้องเผาไหม้ไม่สม่ำเสมอ

ร**ูปที่ 4.11** แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 1 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 1 หัวเผาพบว่า อุณหภูมิที่ตรงทางออกของไอเสียมีอุณหภูมิอยู่ที่ 1624.25 ℃ มีการกระจายตัวของอุณหภูมิที่สม่ำเสมอ ทั้งทางออก โดยมีค่าประสิทธิภาพการเผาไหม้แบบ 1 หัวเผาไหม้เท่ากับ 80.97%

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 1 หัวเผาพบว่า มีความเร็วการไหลของแก๊สไม่สม่ำเสมอตรงทางออกของไอเสีย โดยมีความเร็วในการไหลอยู่ที่ 9.53 m/s ส่งผลให้อุณหภูมิภายในห้องเผาไหม้ไม่สูงมาก

รูปที่ 4.13 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 2 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 2 หัวเผา พบว่า มีการกระจายตัวของอุณหภูมิที่ไม่สม่ำเสมอ ส่งผลให้อุณหภูมิภายในห้องเผาไหม้ไม่สูงมาก และส่งผลให้ อุณหภูมิภายในห้องเผาไหม้มีอุณหภูมิสูงกว่าแบบจำลองของห้องเผาไหม้แบบ 1 หัวเผาเล็กน้อย

รูปที่ 4.14 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 2 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 2 หัวเผาพบว่า มีความเร็วในการไหลอยู่ที่ 8.76 m/s ความเร็วการไหลภายในห้องเผาไหม้มีความสม่ำเสมอ

รูปที่ 4.15 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 2 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 2 หัวเผาพบว่า อุณหภูมิที่ตรงทางออกของไอเสียมีอุณหภูมิอยู่ที่ 1645.45 ℃ มีการกระจายตัวของอุณหภูมิที่สม่ำเสมอ ทั้งทางออก โดยมีค่าประสิทธิภาพการเผาไหม้แบบ 2 หัวเผาไหม้เท่ากับ 81.69%

รูปที่ 4.16 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 2 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 2 หัวเผาพบว่า มีความเร็วการไหลของแก๊สไม่สม่ำเสมอตรงทางออกของไอเสีย โดยมีความเร็วในการไหลอยู่ที่ 10.00 m/s ส่งผลให้อุณหภูมิภายในห้องเผาไหม้ไม่สูงมาก

<u>ตัวอย่างที่ 3</u>

รูปที่ 4.17 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 3 หัวเผา (ด้านบน)

ผลจากการสร้างแบบจำลองทางคณิตศาสตร์ของห้องเผาไหม้แบบ 3 หัวเผาพบว่ามีการ กระจายตัวของอุณหภูมิที่สม่ำเสมอ ส่งผลให้อุณหภูมิภายในห้องเผาไหม้เพิ่มสูงขึ้นกว่าแบบจำลองห้อง เผาไหม้แบบ 1 หัวเผา, 2 หัวเผา และมีอุณหภูมิที่เท่าๆกัน กับแบบจำลองห้องเผาไหม้แบบ 4 หัวเผา

รูปที่ 4.18 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 3 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 3 หัวเผาพบว่า มีความเร็วในการไหลอยู่ที่ 8.01 m/s ความเร็วการไหลภายในห้องเผาไหม้มีความสม่ำเสมอ

รูปที่ 4.19 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 3 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 3 หัวเผาพบว่า อุณหภูมิที่ตรงทางออกของไอเสีย มีอุณหภูมิอยู่ที่ 1680.15 ℃ มีกระจายตัวของอุณหภูมิสม่ำเสมอทั้ง ทางออก และมีอุณหภูมิที่สูงกว่าแบบจำลองห้องเผาไหม้แบบ 1 หัวเผา และแบบจำลองห้องเผาไหม้ แบบ 2 หัวเผา และมีอุณหภูมิที่ใกล้เคียงกัน กับแบบจำลองห้องเผาไหม้แบบ 4 หัวเผา โดยมีค่า ประสิทธิภาพการเผาไหม้แบบ 3 หัวเผาไหม้เท่ากับ 82.23%

รูปที่ 4.20 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 3 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 3 หัวเผาพบว่า มีความเร็วการไหลของแก๊สสม่ำเสมอตรงทางออกของไอเสีย โดยมีความเร็วในการไหลอยู่ที่ 10.95 m/s ส่งผลให้อุณหภูมิภายในห้องเผาไหม้สูง

<u>ตัวอย่างที่ 4</u>

รูปที่ 4.21 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 4 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 4 หัวเผาพบว่า มีการกระจายตัวของอุณหภูมิที่สม่ำเสมอ ส่งผลให้อุณหภูมิภายในห้องเผาไหม้เพิ่มสูงขึ้นกว่าแบบจำลอง ห้องเผาไหม้แบบ 1 หัวเผา, 2 หัวเผา และมีอุณหภูมิที่เท่าๆกัน กับแบบจำลองห้องเผาไหม้แบบ 3 หัว เผา

รูปที่ 4.22 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 4 หัวเผา (ด้านบน)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 4 หัวเผาพบว่า มีความเร็วในการไหลอยู่ที่ 4.69 m/s ความเร็วการไหลภายในห้องเผาไหม้มีความสม่ำเสมอ

รูปที่ 4.23 แบบจำลองอุณหภูมิของห้องเผาไหม้แบบ 4 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 4 หัวเผาพบว่า อุณหภูมิที่ตรงทางออกของไอเสีย มีอุณหภูมิอยู่ที่ 1678.25 ℃ มีกระจายตัวของอุณหภูมิสม่ำเสมอทั้ง ทางออก และมีอุณหภูมิที่สูงกว่าแบบจำลองห้องเผาไหม้แบบ 1 หัวเผา และแบบจำลองห้องเผาไหม้ แบบ 2 หัวเผา และมีอุณหภูมิที่เท่าๆกันกับแบบจำลองห้องเผาไหม้แบบ 3 หัวเผา โดยมีค่าประสิทธิภาพ การเผาไหม้แบบ 4 หัวเผาไหม้เท่ากับ 82.21%

รูปที่ 4.24 แบบจำลองความเร็วการไหลของห้องเผาไหม้แบบ 4 หัวเผา (ด้านข้าง)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้แบบ 4 หัวเผาพบว่า มีความเร็วการไหลของแก๊สสม่ำเสมอตรงทางออกของไอเสีย โดยมีความเร็วในการไหลอยู่ที่ 11.18 m/s ส่งผลให้อุณหภูมิภายในห้องเผาไหม้สูง

	Position 1	Position 2	Position 3	Position 4	Ambient Air	Air inlet
No	°C	°C	°C	°C	°C	°C
1	296.5	258.8	256.5	143.8	37.1	43.6
3	938.6	847.9	816.5	476.4	37.0	47.0
5	983.6	905.0	886.4	712.3	36.8	47.8
7	1032.7	974.6	957.9	905.0	36.8	48.3
9	1101.2	1049.2	1031.7	1046.0	36.6	48.3
11	1166.8	1118.0	1100.6	1145.9	36.7	48.3
13	1264.1	1209.0	1176.3	1225.1	37.6	48.7
15	1344.3	1280.9	1223.7	1284.6	37.6	48.9
17	1404.6	1342.8	1279.5	1328.7	37.3	48.6
19	1456.3	1400.1	1331.9	1366.1	37.9	49.1
21	1503.3	1450.6	1384.2	1395.4	38.0	49.1
23	1547.2	1497.2	1434.2	1417.5	37.5	48.8
25	1587.2	1539.2	1483.6	1435.7	37.5	48.8
27	1625.4	1575.4	1524.2	1455.0	37.7	48.8
29	1655.4	1602.1	1554.0	1470.2	37.7	48.8
31	1685.6	1633.0	1591.4	1477.2	37.6	48.8
33	1713.0	1659.3	1618.3	1490.1	38.0	48.9
35	1746.3	1694.3	1653.0	1501.6	38.4	49.1
37	1780.0	1725.5	1683.5	1525.0	38.1	48.9

4.3 ผลการทดสอบใช้งานจริงกับห้องเผาไหม้

ตารางที่ 4.1 อุณหภูมิเทียบกับเวลาในการทดสอบ

*เวลาในการทดสอบ 180 นาที โดยเก็บข้อมูลทุก 1 นาที และนำข้อมูลมาแสดงผลทุก 5 นาที บันทึกผลด้วย Data Logger

ร**ูปที่ 4.25** กราฟแสดงผลจากการทดสอบและเก็บผลใช้งานจริงของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบ ท่อขดแบบ 3 หัวเผา

ดำเนินการทดสอบกับห้องเผาไหม้ที่ 3 หัวเผากับห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด เพื่อพิสูจน์และรองรับความเป็นไปได้ระหว่างานจริงกับการทดสอบผลจากการสร้างแบบแบบจำลองทาง คณิตศาสตร์

จากกราฟแสดงว่าผลของอุณหภูมิของห้องเผาไหม้ที่ทำการทดสอบจริงมีค่าของอุณหภูมิที่ต่ำ กว่าการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด แบบ 3 หัวเผาไหม้เล็กน้อย

4.4 การเทียบผลของแบบจำลองกับการทดสอบ

จากกราฟแสดงผลจากการเทียบผลของแบบจำลองกับการทดสอบ จะเห็นได้ว่าผลจากการ วิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด แบบ 3 หัวเผา ไหม้มีค่าของอุณหภูมิที่สูงกว่าการทดสอบแบบ 3 หัวเผาไหม้ โดยตำแหน่งการวัดที่ 1 มีอุณหภูมิต่างกัน เท่ากับ 127 °C ตำแหน่งการวัดที่ 2 มีอุณหภูมิต่างกันเท่ากับ 175 °C ตำแหน่งการวัดที่ 3 มีอุณหภูมิ ต่างกันเท่ากับ 210 °C และตำแหน่งการวัดที่ 4 มีอุณหภูมิต่างกันเท่ากับ 155 °C

บทที่ 5 สรุปผลการวิจัย อภิปรายผล และข้อเสนอแนะ

5.1 สรุปผลการทดลอง

5.1.1 สรุปผลการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้เครื่องกำเนิด ไอน้ำแบบท่อขด (STSG)

ผลจากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ของห้องเผาไหม้เครื่องกำเนิดไอน้ำ แบบท่อขด (STSG) พบว่าจำนวนหัวเผาไหม้แบบ 3 หัวเผา มีความเหมาะสมที่จะนำมาติดตั้งกับการใช้ งานจริง เนื่องจากความยาวของเปลวไฟทั้ง 3 หัวเผาไหม้หมุนวนมาถึงแต่ละหัวเผาไหม้พอดีส่งผลให้ ประสิทธิภาพเชิงความร้อนแบบ 3 หัวเผาไหม้ สูงกว่าแบบ 1 หัวเผาไหม้ และแบบ 2 หัวเผาไหม้ โดยที่ ค่าประสิทธิภาพเชิงความร้อนแบบ 3 หัวเผาไหม้ และแบบ 4 หัวเผาไหม้ มีค่าประสิทธิภาพเชิงความ ร้อนเท่าๆกันทั้ง 2 แบบจำลอง ดังนั้นจึงสามารถสรุปผลได้ว่าผลจากการวิเคราะห์แบบจำลองสมการทาง คณิตศาสตร์ ที่ 3 หัวเผาไหม้ และ 4 หัวเผาไหม้ มีประสิทธิภาพเชิงความร้อนดีที่สุด ทั้งนี้ในการ ทดสอบขั้นต่อไปจึงเลือก ที่ 3 หัวเผาไหม้มาทดสอบจริงเพื่อเป็นการสอบเทียบความแม่นยำของ แบบจำลองที่ทำการวิเคราะห์ผล

5.1.2 สรุปผลการทดสอบใช้งานจริงกับห้องเผาไหม้

จากการทดสอบใช้งานจริงพบว่า เมื่อนำผลที่ได้จากการวิเคราะห์แบบจำลองสมการทาง คณิตศาสตร์ของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด (STSG) ที่ 3 หัวเผาไหม้มาทดสอบ เปรียบเทียบค่าทางความร้อนและการกระจายตัวของความร้อนภายในห้องเผาไหม้ ที่ 3 หัวเผาไหม้ ค่าที่ได้จากการคำนวณด้วยโปรแกรมโดยใช้ตำแหน่งในการวัดอุณหภูมิเป็นตำแหน่งเดียวกันทั้งการ คำนวณในโปรแกรมและการทดสอบจริง ซึ่งแบ่งตำแหน่งในการวัด 4 ตำแหน่ง ค่าที่ได้จากเทอร์โม คับเปิลในการวัดแต่ละจุดได้ดังตารางที่ 5.1

	4 U				
อุณหภูมิที่วัดได้จาก	าการวิเคราะห์แบบจำลอง	อุณหภูมิที่วัดได้จากการทดสอบจริง			
ตำแหน่ง	องศาเซลเซียส °C	ตำแหน่ง	องศาเซลเซียส °C		
1	1907	1	1780		
2	1900	2	1725		
3	1893	3	1683		
4	1680	4	1525		

ตารางที่ 5.1 เปรียบเทียบอุณหภูมิการทดสอบระหว่างการวิเคราะห์แบบจำลองและการทดสอบจริง

*ตำแหน่งที่ 4 คือตำแหน่งวัดอุณหภูมิที่ท่อไอเสียขาออก

จากผลของอุณหภูมิที่วัดได้ทั้งในทฤษฎีตามการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์ และผลการวัดอุณหภูมิที่วัดได้จาการทดสอบจริงมีค่าความร้อนที่ใกล้เคียงกัน จึงทำให้งานวิจัยนี้มีความ สอดคล้องและมีความเป็นไปได้จริงในทางปฏิบัติ เพื่อนำไปใช้งานและต่อยอดงานวิจัยต่อไปในส่วนอื่น ได้ ทั้งในเรื่องประสิทธิภาพการใช้งานและจุดคุ้มทุน

ค่าความแตกต่างระหว่างการวิเคราะห์แบบจำลองและการทดสอบจริงมีความต่างในเรื่องของ อุณหภูมิที่วัดได้ในแต่ละจุดคือในทางทฤษฎีการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์จะต้อง กำหนดผนังของห้องเผาไหม้ทั้งหมดเป็นวัสดุชนิดเดียวกันและเป็นเนื้อเดียวกัน โดยตามงานวิจัยนี้ได้ กำหนดผนังเป็นแบบฉนวน แต่ในทางปฏิบัติการทดสอบหรือการสร้างงานจริงยังมีความเสถียรน้อยใน การสร้างฉนวนในแต่ละจุด จึงทำให้เกิดการสูญเสียความร้อน ทำให้ค่าของอุณหภูมิที่ได้มีความ แตกต่างกัน

5.2 ข้อเสนอแนะ

เครื่องกำเนิดไอน้ำแบบท่อขด นับเป็นงานวิจัยที่ได้รับความสนใจจากผู้ที่สนใจอยู่ไม่น้อย เนื่องจากเป็นการนำเทคโนโลยีการกำเนิดไอน้ำที่ใหม่ โดยจะเปรียบท่อขดเสมือนหม้อไอน้ำขนาดเล็ก แต่มีประสิทธิภาพการใช้งานสูงเหมาะสมต่อการนำไปประยุกต์ใช้งาน หรือวิจัยพัฒนาต่อยอด อีกทั้งยัง มีต้นทุนในด้านพลังงานที่สามารถใช้ได้หลากหลายมีชิ้นส่วนที่น้อยกว่า จึงมีชิ้นส่วนที่สึกเหรอน้อยทำให้ ไม่ต้องบำรุงรักษามาก อีกทั้งเป็นมิตรต่อสิ่งแวดล้อมโดยไม่สร้างมลภาวะและเนื่องจากการเผาไหม้อยู่ ด้านนอกแบบต่อเนื่อง การใช้งานไม่ซับซ้อนและมีขนาดที่กะทัดรัด และเป็นเครื่องยนต์ต้นกำลังอีก ประเภทหนึ่งที่มีความน่าสนใจในการพัฒนาต่อให้สามารถใช้งานได้กับงานหลากหลายประเภทมากขึ้น ด้วยต้นทุนในด้านพลังงานที่ไม่สิ้นสุด

บรรณานุกรม

- [1] Gupta, A.k. "Flame Characteristics and Challenges With High Temperature Air Combustion" Proc. 2nd International Seminar on High Temperture AirCombustion Jan. 17-18, 2000.
- [2] Hasegawa. T., and Tanaka,R. "High Temperature Air Combustion" JSME International Journal. 4l :1079-1084.
- [3] Gouldin, F.C., Depsky J.S. and Lee S-L. "Volocity Field Characteristics of a Swirling FlowCombustion." AIAA Journal. Vol.23. No.1. (1985) : 95-102.
- [4] Chaouki Ghenai. "Combustion of Syngas Fuel in Gas Turbine Can Combustor." HindawiPublishing Corporation Advances in Mechanical Engineering. Vol.2010, Article ID342357, 13 pages.
- [5] Firoj, H. Pathan, Nikul, K. Patel and Mihir, V. Tadvi. "Numerical Investigation of the Combustion of Methane Air Mixture in Gas Turbine Can-Type Combustion Chamber."International Journal of Scientific & Engineering Research. Vol.3. Issue.10. (Oct2012).
- [6] Rabou, L.P.L.M., et al. Micro Gas Turbine Operation with Biomass ProducerGas.Contribution to the 15th European Biomass Conference, Berlin, May 2007.
- [7] Farzad Bazdidi-Tehrani and Hamed Zeinivand. "Presumed PDF modelingreactive twophaseflow in a three dimensional jet-stabilized model combustor." Energy Conversion and Management. 51 (2010) : 225-234.
- [8] "Process simulation and CFD calculations for the development of an innovative baled biomass-fired combustion chamber." Applied Thermal Engineering.27 (2007) : 1138-1143.
- [9] Eman Tora, Erik Dahlquist. "Fluent simulation of prevention of dioxins formation via controlling homogenous mass and heat transfer within circulated fluidized bed combustor." Future Energy Research Centre, Department Energy.75(2015)130-136.
- [10] Robert Peele, Mining Engineers' Handbook, vol.II, John Wiley & Sons, New York, 1966.
- [11] ดร.เสรี ศุภราทิตย์. หนังสือกลศาสตร์ของไหล (Fluid Machanics) สำนักพิมพ์มหาวิทยาลัย รังสิต
- [12] ผศ.ผ่องศรี ศิวราศักดิ์, หนังสือกลศาสตร์ของไหลประยุกต์ (Applied Fluid Machanics) สำนักพิมพ์ บริษัททริปเพิ้ล กรุ๊ป จำกัด

<u>การคำนวณการออกแบบห้องเผาไหม้ของเครื่องกำเนิดไอน้ำแบบท่อขด</u> การออกแบบได้มีการคำนวณในส่วนของห้องเผาไหม้ โดยมีขั้นตอนการคำนวณดังนี้ การวิเคราะห์องค์ประกอบของเชื้อเพลิง

การวิเคราะห์การเผาไหม้ของแก๊สหุงต้ม (LPG) เพื่อต้องการคำนวณหาอัตราการป้อนอากาศ ตารางที่ ก.1 องค์ประกอบคิดเป็นร้อยละโดยน้ำหนักของแก๊สหุงต้ม(LPG)

องค์ประกอบ	ร้อยละโดยน้ำหนัก	น้ำหนักโมเลกุล (kg/mol)
โปรเปน C ₃ H ₈	70	44
บิวเทน C ₄ H ₁₀	30	58
ปริมาณร้อยละของแก๊สแต่ละช	นิดในไอเสียแห้งที่เกิดขึ้นเมื่อ	วิเคราะห์ต่อ 1 kg
$C_{3}H_{8}$ + $5O_{2}$	> 5CO ₂	+ 4H ₂ O
44 kg + 5(32) kg	= 204 kg	
1 kg + 3.636 kg	= 4.636 kg	
ดังนั้น 0.7 kg C ₃ H ₈ จะใช้ O ₂ =	= 3.636 x 0.7 = 2.545 kg	
$C_4H_{10} + 6.5O_2$	> 4CO ₂	+ 5H ₂ O
58 + 6.5(32)	= 266 kg	
1 kg + 3.586	= 4.586	
ดังนั้น 0.3 kg C ₄ H ₁₀ จะใช้ O ₂	= 3.586 x 0.3 = 1.075 kg	
ได้ปริมาณ O ₂ เพื่อการเผาไหม้ห	ขั้งหมด	2.545 + 1.075
	400)	3.6 kg
ในอากาศมี O ₂ อยู่ร้อยละ 23.2	: โดยน้ำหนัก	
ดังนั้นจะต้องใช้อากาศ (ทฤษฎี)	-	3.6/0.232
1 6		
	=	15.5 kg/kg _{LPG}

<u>การคำนวณประสิทธิภาพการเผาไหม้จากการวิเคราะห์แบบจำลองสมการทางคณิตศาสตร์</u>

สำหรับการคำนวณประสิทธิภาพการเผาไหม้สามารถคำนวณได้จากสมการที่ (2.42)

$$\eta = \frac{-\left(\left[\left(\frac{A}{F}+1\right)h_{prod}-\left(\frac{A}{F}\right)h_{A}-h_{F}\right]\right)}{\bigtriangleup}$$
 LHV

ตารางที่ ก.2 ค	่าของตัวแปรที่ใช้ในการคํ	ำนวณแบบ 1 หัวเผาไหม้จ	งากการคำนวณเชิงตัวเลข CF	Đ
Purpor	Inlet Er	nthalpy	Outlet Enthalpy	
bumer	Air dh [J/kg]	fuel dh [J/kg]	dh P2 [J/kg]	AVE
1	20246 874	-2329216	-80061 25	15 5

โดยกำหนดให้ค่า LHV ของก๊าซปิโตรเลียมเหลว (LPG) = 46607000 J/kg จากนั้นแทนค่าของตัวแปร

n = (-((15.5+1))(-	80061.25)-(15.5)(20246.874-(-	2329216)))
II – (– –	46607000)x100
= 80.97 %		

ตารางที่ ก.3 ค่าของตัวแปรที่ใช้ในการคำนวณแบบ 2 หัวเผาไหม้จากการคำนวณเชิงตัวเลข CFD

Air dh [J/kg] fuel dh [J/kg] dh P2 [J/kg] Av 2 20246.893 -2329215.9 -100532.12 15	Durpor	Inlet Enthalpy Outlet Enthalpy			۸ / Г
2 20246.893 -2329215.9 -100532.12 15	burner	Air dh [J/kg]	fuel dh [J/kg]	dh P2 [J/kg]	AVE
	2	20246.893	-2329215.9	-100532.12	15.5

โดยกำหนดให้ค่า LHV ของก๊าซปิโตรเลียมเหลว (LPG) = 46607000 J/kg จากนั้นแทนค่าของตัวแปร

$$\eta = \left(-\frac{(-((15.5+1)(-100532.12) - (15.5)(20246.893 - (-2329215.9)))}{46607000}\right) \times 100$$

a		1	J	1 49 2	n o	_	J	y v	0	9	J	
ตารางท	ี ก.4	คาขอ	งตวแเ	ปรทเช	ในการคาน	วณแบบ 3	หวเผ	าเหมจ	ากการคาน	เวณเชง	າຫລາຍ	CFD
					•••••							

Purper	Inlet Er	nthalpy	Outlet Enthalpy	
burner	Air dh [J/kg]	fuel dh [J/kg]	dh P2 [J/kg]	AVE
2	20246.766	-2329217.9	-115753.59	15.5

โดยกำหนดให้ค่า LHV ของก๊าซปิโตรเลียมเหลว (LPG) = 46607000 J/kg จากนั้นแทนค่า ของตัวแปร

$$\eta = \left(-\frac{(-((15.5+1)(-115753.59)-(15.5)(20246.766-(-2329217.9)))}{46607000}\right)x100$$

= 82.23 %

ตารางที่ ก.5	ค่าของตัวแบ	lรที่ใช้ในการค [ู] ้	านวณแบบ 4	ห้วเผาไหม้จ′	ากการคำนวณ	แชิงตัวเลข CFD

Purpor	Inlet Ei	nthalpy	Outlet Enthalpy	۸ /٢
burner	Air dh [J/kg]	fuel dh [J/kg]	dh P2 [J/kg]	AVE
2	20246.764	-2329215.6	-114971.93	15.5

โดยกำหนดให้ค่า LHV ของก๊าซปิโตรเลียมเหลว (LPG) = 46607000 J/kg จากนั้นแทนค่าของตัวแปร

n = (-((15.5+1)(-114971.93)-(15.5)(20246.764-(-2329215.6)))
η = (= <u></u>	46607000
= 82.21	%

ขั้นตอนการใช้งาน FLUENT

สำหรับขั้นตอนแรกของ FLUENT ต้องกำหนด Type ของ Solver เป็น Pressure Based และ Steady ดังรูปที่ ก.1

Genera	HQQ		
Mesh	200		3/11/20
S S S	cale	Check	Report Quality
C C	splay		
Solve	act.		S'//
Туре		Veloci	ity Formulation
P P	ressure-Base	ed O A	Absolute
			concerve a
Time			
Time S	teady		
Time S Time	teady ransient		
Time S Gra	teady ransient vity Units.		

สำหรับการเผาไหม้ที่เกิดขึ้น ต้องมีสมการพลังงานเข้ามาเกี่ยวข้อง โดยสมการดังกล่าว สามารถกำหนดได้ จาก Model > Energy Equation ดังรูปที่ ก.2

Energy		
👿 Ener	gy Equation	
ОК	Cancel	Help

ร**ูปที่ ก.2** การเลือก Energy Equation

สำหรับการจำลองการไหลแบบปั่นป่วน (Viscous Model) จะกำหนดเป็น RNG k-epsilon ซึ่งสามารถกำหนดได้จาก Model > k-epsilon ดังรูปที่ ก.3

Model	Model Constants
	Cmu OD (C
	0.0845
kension (2 enn)	C1-Epsilon
k-omega (2 eqn)	1.42
Transition KkI-omega (3 eqn) Transition SST (4 eqn) Reynolds Sträss (7 eqn) Scale-Adaptive Simulation (SAS) Detached Eddy Simulation (DES)	C2-Epsilon
	1.68
	Swirl Factor
	0.07
	Wall Prandtl Number
 Large Eddy Simulation (LES) 	0.85
k-epsilon Model	PDF Schmidt Number
O Standard	0.85
RNG	
() Realizable	
RNG Options	User-Defined Functions
Differential Viscosity Model	Turbulent Viscosity
Swirl Dominated Flow	none
Near-Wall Treatment	Prandtl Numbers
Standard Wall Functions	Wall Prandtl Number
Scalable Wall Functions	none
O Non-Equilibrium Wall Functions	2013,1
Enhanced Wall Treatment	610
Menter-Lechner	
User-Defined Wall Functions	
Options	
Viscous Heating	
Curvature Correction	
Production Kato-Launder	
Production Limiter	

กำหนด Radiation Model โดยกำหนดแบบ Discrete Oridinates (Do) ดังรูปที่ ก.4

Radiation Model			\times
Model Off Rosseland P1 Discrete Transfer (DTRM) Surface to Surface (S2S) Discrete Ordinates (DO) Monte Carlo (MC) D0/Energy Coupling Solar Load Model Off Solar Ray Tracing D0 Irradiation Solar Calculator	Iteration Para Energy Iteration Theta Divisions 2 1 Phi Divisions 2 1 Theta Pixels 1 1 Phi Pixels 1 1	ameters ons per Radiation Iteration 10 Non-Gray Model Number of Bands 0	•
	OK Cancel Help		

รูปที่ ก.4 การเลือก Radiation Model

กำหนดการเผาไหม้แบบ Non Premixed Combustion โดยกำหนดให้เชื้อเพลิงเป็น C₃H₈ และ C₄H₁₀ เลือก Model

Model	Chemistry Boundary Control Flamelet	Table Pr	operties Pr	emi
Oil Species Transport Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport	State Relation Energy Treatment Chemical Equilibrium Adiabatic Steady Diffusion Flamelet Unsteady Diffusion Flamelet Diesel Unsteady Flamelet Flamelet Generated Manifold	t Stream O Second Empiric	ptions dary Stream cal Fuel Stream	
	Model Settings			
	Operating Pressure (pascal) 101325			
✓ Inlet Diffusion	Fuel Stream Rich Flamability Limit 0.1	Coal Calcul	ator	
Compressibility Effects	Thermodynamic Database File Name			
	GRA~1\ANSYSI~1\v180\fluent\fluent18.0.0\\cpropep\	\data\\thermo.	db Browse	
Species Model	OK Apply Cancel Help	395	2	
Species Model	OK Apply Cancel Help Chemstry Boundary Control Flamelet	Table Pro	operties Pr	em
Species Model Off Species Transport	OK Apply Cancel Help Chemistry Boundary Control Flamelet	Table Pro	operties Pr	em
Species Model Off Species Transport Non-Premixed Combustion Premixed Combustion	OK Apply Cancel Help Chemstry Boundary Control Flamelet Igeta <g> n2</g>	Table Pro	operties Pr	em
Species Model Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion	OK Apply Cancel Help Chemstry Boundary Control Flamelet	Table Pro	0 0 0.78992 0.21008	em
Species Model Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport	OK Apply Cance Heb Chemstry Boundary Control Flamelet jet.a <g> n2 o2 c3h8</g>	Table Pro	operties Pr 0 0.78992 0.21008 0	em
Species Model Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport	OK Apply Cance Heb Chemstry Boundary Control Flamelet jet-a <g> n2 o2 c3h8 c4h10</g>	Table Pro	operties Pr 0 0.78992 0.21008 0 0 0	
Species Model Off Species Transport Non-Premixed Combustion Partially Premixed Combustion Composition PDF Transport	OK Apply Cancel Help Chemstry Boundary Control Flamelet jet.a <g> n2 o2 c3h8 c4h10</g>	Table Pro-	opperties Pr 0 0.78992 0.21008 0 0 0	em
Species Model Model Off Species Transport Non-Premixed Combustion Partially Premixed Combustion Composition PDF Transport PDF Options I Inlet Diffusion Compressibility Effects	OK Apply Cancel Help Chemstry Boundary Control Famelet jet.a <g> </g>	Table Pro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mass Mole Mole	operties Pr 0 0.78992 0.21008 0 0 0 0 0 0 0 0 0 0 5 Pecies in Fraction	emi
Species Model Model Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport PDF Options Inlet Diffusion Compressibility Effects	OK Apply Cancel Help Chemistry Boundary Control Famelet jet.a <g> </g>	Table Pro	operties Pr 0 0.78992 0.21008 0 0 0 0 0 5 Species in Fraction Fraction	emi

รูปที่ ก.5 การเลือก Combustion Model

กำหนดเงื่อนไขเบื้องต้นสำหรับเชื้อเพลิงและอากาศ จาก Boundary Condition โดยกำหนด Type ของทางเข้าเชื้อเพลิงและอากาศเป็น Mass-flow-inlet และกำหนดอัตราการไหล อุณหภูมิ และ สัดส่วนโดยมวลของเชื้อเพลิงและอากาศ ดังรูปที่ ก.6

air_inlet					
Momentum	Thermal Rad	liation Species DP	M Multiphase	Potential	
	Reference Fra	me Absolute			•
Mass Flo	w Specification Meth	nod Mass Flow Rate			•
	Mass Flow Rate	(kg/s) 0.006466667	constant		•
Supersonic/Initi	al Gauge Pressure (p	oascal) 0	constant		•
Directio	n Specification Meth	nod Normal to Boundary			•
	Turbulence				
	Specification Metho	od Intensity and Viscosity I	Ratio	•	•
		Turbulent Intensity	(%) 5		Р
		Turbulent Viscosity F	Ratio 10		Р
Mass-Flov	v Inlet	OK Cancel Hel	p		
Mass-Flow Zone Name fule_inlet	v Inlet	OK Cancel Hel	p		
Mass-Flow Zone Name fule_inlet Momentum	v Inlet Thermal Rad	OK Cancel Hel	p YM Multiphase	Potential	
Mass-Flow Zone Name fule_inlet Momentum	v Inlet Thermal Rad	OK Cancel Hel	p YM Multiphase	Potential	- I
Mass-Flow Zone Name fule_inlet Momentum Mass Flo	v Inlet Thermal Rad Reference Fra w Specification Meth	OK Cancel Hel	P M Multiphase	Potential	
Mass-Flov Zone Name fule_inlet Momentum Mass Flo	v Inlet Thermal Rad Reference Fra w Specification Meth Mass Flow Rate	OK Cancel Hell Iston Species DP me Absolute nod Mass Flow Rate (Kg/s) 0.000016667	P M Multiphase	Potential	• •
Mass-Flov Zone Name fule_inlet Momentum Mass Flo Supersonic/Init	v Inlet <u>Thermal</u> Rad Reference Fra w Specification Meth Mass Flow Rate al Gauge Pressure (p	OK Cancel Hell liation Species DP me Absolute nod Mass Flow Rate (Kg(s) (0.000416667 macaca) (0	p M Multiphase	Potential	
Mass-Flow Zone Name fule_inlet Momentum Mass Flo Supersonic/Init Directit	v Inlet Thermal Rad Reference Fra w Specification Mett Mass Flow Rate al Gauge Pressure (c on Specification Mett	OK Cancel Hell Ilation Species OF me Absolute Nono44667 nod Mass Flow Rate (Kajs) (Kajs) 0.000416667 Normal to Boundary	P M Multphase	Potential	• • • •
Mass-Flow Zone Name fule_inlet Momentum Mass Flo Supersonic/Init Directio	v Inlet Thermal Rad Reference Fra w Specification Mett Mass Flow Rate al Gauge Pressure (p. m Specification Mett Turbulence	OK Cancel Hell Iation Species OF me Absolute Od Od odd Mass Flow Rate (kg) 0,000416667 vascal) 0 od Normal to Boundary	M Multiphase	Potential	• • •
Mass-Flov Zone Name fule_inlet Momentum Mass Flo Supersonic/Init Directio	v Inlet Thermal Rad Reference Fra w Specification Meth Mass Flow Rate al Gauge Pressure (pr Specification Meth Turbulence Specification Methn	OK Cancel Hell Jaton Species DF me Absolute od Mass Flow Rate (kg/s) 0.000416667 od odd Normal to Boundary od od Intensity and Viscosity Norsky and Viscosity	P PM Multiphase constant constant	Potential	
Mass-Flov Zone Name fule_inlet Momentum Mass Flo Supersonic/Init Directio	v Inlet Thermal Rad Reference Fra w Specification Meth Mass Flow Rate al Gauge Pressure (p n Specification Meth Turbulence Specification Meth	OK Cancel Hell Iston Species OF mme Absolute Od odd Mass Flow Rate (kg/s) (kg/s) 0.000416667 pascal) pascal) 0 Od odd Intensty and Viscosity Turbulent Intensty	P Multiphase constant constant Ratio (%) (5	Potential	• • • •
Mass-Flov Zone Name fule_inlet Momentum Mass Flo Supersonic/Init Directio	v Inlet Thermal Rad Reference Fra w Specification Meth Mass Flow Rate al Gauge Pressure (p n Specification Meth Turbulence Specification Meth	OK Cancel Hell Iston Species OF mme Absolute Od odd Mass Flow Rate (kg/s) (kg/s) 0.000416667 Od oadd Normal to Boundary Od od Intensity and Viscosity Turbulent Intensity Turbulent Viscosity Turbulent Viscosity Turbulent Viscosity	P Multiphase	Potential	• • • •

รูปที่ ก.6 การกำหนด Boundary Condition

กำหนด Solution Metho	ods เป็นแบบ SIMPLE ดังรูปที่ ก.7
	Solution Methods
	Pressure-Velocity Coupling
	Scheme
	SIMPLE
	Spatial Discretization
	Gradient
	Least Squares Cell Based
	Pressure
	Second Order
	Momentum
	Second Order Upwind
	Turbulent Kinetic Energy
	Second Order Upwind 🗸
	Turbulent Dissipation Rate
	Second Order Upwind
	Transient Formulation
	×
	Non-Iterative Time Advancement
	Frozen Flux Formulation
	Pseudo Transient
	Warped-Face Gradient Correction
	High Order Term Relaxation Options
	Default

รูปที่ ก.7 การเลือก Solution Method

กำหนดค่าเริ่มต้นสำหรับการจำลองจาก Solution Initialization แบบ Hybrid Initialization ดังรูปที่ ก.8

Solution Initialization
Initialization Methods Hybrid Initialization Standard Initialization
More Settings Initialize
Patch
Reset DPM Sources Reset Statistics

รูปที่ **ก.8** การกำหนดค่าเริ่มต้นสำหรับการจำลอง

กำหนด Residual Monitors เท่ากับ 10⁻³ ดังรูปที่ ก.9

รูปที่ ก.9 การกำหนด Residual Monitors

กำหนด Calculation Iteration ที่ 1,000 รอบ แล้วบันทึกข้อมูล ดังรูปที่ ก.10

	Calculation Activities	
	Autosave Every (Iteratio	ns)
	1000	Edit
	Automatic Export	
	Create T Edit	
รเมติ ถ 10 รอบอารอักษ	าถเส้าหรับบันทึ่งข้อยอย	ວາກາະລຳລຸລາ
3กม แรก วอกแารแห	าเหล เพรากกหมแลอที่ยุภ	ยง(11) 3 ขาตยง
กำหนด Run (Calculation ดังรูปที่ ก	
	G	
	Run Calculation	
	Check Case	Update Dynamic Mesh
	Number of Iterations	Reporting Interval
	Profile Update Interval	5011.51
	1 5	S S S
	Data File Quantities	Acoustic Signals
	116166	Acoustic Sources FFT
	Calculate	
	Help	

ร**ูปที่ ก.11** จำนวนรอบการคำนวณของการจำลอง

รูปที่ ข.1 แบบห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด

รูปที่ ข.2 แบบด้านหน้า, ด้านข้าง และด้านบน ของห้องเผาไหม้เครื่องกำเนิดไอน้ำแบบท่อขด

รูปที่ ค.2 ชิ้นส่วนโครงสร้างห้องเผาไหม้ส่วนฝา

รูปที่ ค.3 การวางเซรามิกซ์เปเปอร์เพื่อเป็นฉนวนภายในห้องเผาไหม้

รูปที่ ค.5 การเทคอนกรีตทนไฟภายในห้องเผาไหม้

รูปที่ ค.6 การเทคอนกรีตทนไฟที่ฝาปิดห้องเผาไหม้

รูปที่ ค.7 การประกอบโครงสร้างเข้ากับห้องเผาไหม้

รูปที่ ค.8 การประกอบฝาห้องเผาไหม้

รูปที่ ค.9 การติดตั้งระบบป้อนอากาศ

ร**ูปที่ ค.10** การติดตั้งระบบป้อนแก๊สหลัก

รูปที่ ค.11 การติดตั้งระบบป้อนแก๊สแยก 3 ช่องทาง

รูปที่ ค.12 การติดตั้งระบบไฟฟ้า

รูปที่ ค.13 ทดลองเดินระบบการเผาไหม้และแก้ไขปรับปรุงระบบ

รูปที่ ค.14 ทดลองเดินระบบการเผาไหม้ และปรับจูนระบบ

รูปที่ ค.15 ทดลองเดินระบบการเผาไหม้ และเก็บข้อมูลการทดลอง

	คอนกรีททนไฟ ชนิดที่มีปริมาณ	ซีเมนต์น้อยมาก (ULCC)	 เทมาะสำหรับการ ใช้งานที่อุณฑภมิ สูงกว่า 1.700 °C ที่ต้องการ ความเขึ่งแรงสูง ทนต่อการขัดสี และการกัดกร่อน จากปฏิกัธิยาทางเคมี 	-C 82 -C 95 -ALCOM 90
	าต์นิอย (LCC)	EAZYFLOW Series	 มีคุณสมบัติ ไหลตัวได้ดี เทนาะสำหรับ เริ่างารับ เปลี่ยะกา และชับช้อน 	-EAZYFLOW 40 -EAZYFLOW 60 -EAZYFLOW 80 -EAZYFLOW 85
	นิคที่มีปริมาณซีเมเ	C-SERIES	 เทมาะสำหารับ งานที่ต้องการ ความทนทน สูงเป็นเนิศษ องบันแนศษ ทัศทร่อน ของอัสคาไลน์ ได้ศีเยียม 	-C 58 -C 40 A -C 60 A -C 70 A
ตานไฟ	คอนกรีฑทนไฟช	NEOCAS Series	 เทมาะสำหรับ งานที่ต้องการ สูง สูง 	-NEOCAS 1350 -NEOCAS 1450 -NEOCAS 1550 -NEOCAS 1650 -NEOCAS 1650
คอนกรี	A CONTRACTOR	CG SERIES	 สำหรับงาน สำหรับงาน ที่ต้องการ ความเข้องแรง กามซ่อการบัตสี และการ และการ เปลี่ยนแปลง อุณพฏมี อย่างฉับพลัน 	-CAST 13 CG -CAST 14 CG -CAST 17 CG
	ทนไฟชนิดทั่วไป	LW SERIES	 เป็นฉนวน ป้องกับ การสูญเสีย< ความร้อนและ ช่วยประทยัด แล้งงาน 	-CAST 10 LW -CAST 11 LW -CAST 13 LW -CAST 15 LW
	คอนกรีต	ES SERIES	สำหรับงาน ที่ต้องการ ความเข็งแรง สามารถรับ น้ำหนักได้ศี	-CAST 13 ES -CAST 15 ES
		NORMAL	 สำหรับใช้ กับงานทล่อ ทั่วไป 	-CAST 13 -CAST 15 -CAST 16 -CAST 16 SP -CAST 18 SP -CAST 18 SP
			วุศเค่น	ชื่อสินค้า

								Extra 9	tranath						Co	tree Gr	ui u
Properties of Products			Nor	nal Con	vention	al Cast	able	(ES S	eries)	-	ightwei	ght (LV	/ Serie	(*	30	G Serie	1
		13	51	91	48 9L	81	48 81	13 E2	S3 SL	M1 01	M7 11	13 FM	MT SL	WJ 81	13 CB	14 CB	90 21
	LUN'	TRAD	CAST	CAST	TEAD	TSAD	TEAST	TEAD	TSAD	TEAD	TRAD	TZAD	TRAD	TRAD	TSAD	TRAD	TRAD
Physical Properties : (Typical)			2														
Maximum Service Temperature	J.	1300	1500	1600	1600	1800	1800	1300	1500	1000	1100	1300	1500	1800	1300	1400	1700
Approximate Weight Required for Casting	kg/m²	2010	2200	2300	2720	2720	2720	2010	2150	600	860	1300	1450	1450	2110	2220	2560
Approximate Amount of Water Required for Casting	*	Ŧ	Ŧ	10	01		10	#	11	110	50	30	22	20	11	10	10
Bulk Density after Drying at 110 'C	kQ2 ^{ma}	2070	2125	2230	2250	2800	2800	2115	2150	580	1000	1400	1500	1650	2155	2290	2640
Modulius of Rupture after Drying at 110 °C	kg/cm²	20	70	20	40	100	120	8	8	e	-		30	30	60	80	20
Cold Crushing Strength after Drying at 110 °C	kuram	380	300	400	400	650	650	450	400	9	40	125	150	150	380	380	350
Permanent Linear Change	*	+0.50	-0.50	-0.20	-0.20	0.50	-0.50	+0.50	-1.00	-0.90	-0.80	-0.04	-0.80	-0.40	+0.50	-0.03	-0.60
after Heating at	9.	1260	1480	1595	1595	1760	1760	1260	1480	925	1040	1260	1480	1760	1260	1370	1705
Thermal Conductivity at 400 °C	(Witm K)	1.15	4.18	1.20	1.20	1.87	1.87	1.15	1.21	0,18	0.25	0.36	0.59	0.82	1.18	1.22	1.85
at 600 °C	(W/m/K)	1/18	1.23	1.25	1.25	1.87	1.87	1.18	1.26	0.20	0.30	0.38	0.60	0.76	1.23	1.27	1.85
at 1000 °C	(W/m K)	1:30	1.38	1.40	1.40	1.90	1.90	1.30	1.41		0.40	0.42	0.63	0.73	1.38	1.42	1.87
Chemical Composition : Approximate)									
Alumina (Al ₂ O ₃)	.6 20	36.5	48.0	60.0	59.5	93.5	54.0	36.0	50.0	24.0	14.5	41.0	66.0	94.5	38.5	48.0	87.5
Silica (SiO ₂)	%	52.0	40.0	33.0	32.5	0.2	0.2	50.0	37.0	44.0	54.5	42.0	15.0	0.5	49.0	38.0	5.0
Iron Oxide (Fe ₂ 0 ₃)	38	15	1.5	1.4	1.4	0.2	0.2	1.5	1.5	1.0	0.5	1.5	1.5	0.1	1.5	1.5	1.5

roperties of Products								LC	0								-	
			N	BOCAS	Series				C Se	ries			Eazyl	MO			TUC	
181.	NN A	NEOCAS 1350	NEOCAS 1450	NEOCAS 1650	NEOCAS 1650	NEOCAS 1750	NEOCAS 1800	C 28	C 40 V	C 60 A	V 02 0	OP MOTALZAS	09 MOJIYZA	08 WOJAYSA3	88 WOJTYSA	C 85	ALCOM 90	96 D
hysical Properties : (Typical)	R	R	3															
Maximum Service Temperature	(C)	1350	1450	1550	1650	1750	1800	1500	1400	1500	1600	1450	1600	1700	1750	1700	1750	1800
Approximate Weight Required for Castling	kg/m ^s	2170	2380	2580	2680	2300	3100	2430	2350	2500	2700	2450	2550	2800	3450	2850	3200	3200
Approximate Amount of Water Required for Casting	*	6.0.7.0	6.0-7.0	5.0-6.0	0.9-01	5.0-6.0	4,5-5.5	4.5-5.5	1.5-5.5	4.5-5.5	4.5-6.5	8.5-7.5	3.0-6.5	0-6.5 4	.5-6.5 3	15-5.0 4	0-4.5	1.6-5.0
Bulk Density after Drying at 110 °C	karma	2200	2400	2600	2700	2920	3120	2440	2380	2520	2720	2350	2500	2850	3000	2860	3250	3200
Modulus of Rupture after Drying at 110 'C	kortenia	60	80	8	80	80	100	65	65	85	2	20	20	80	130	40	45	50
Cold Crushing Strength after Drying at 110 °C	kg/cm ^a	500	200	700	600	550	200	550	550	750	800	300	550	500	700	350	250	500
Permanent Linear Change	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	06.0-	-0.23	-0.15	0.20	+0.15	-0.65	+0.70	+0.20	+0.50	egligible	-0.10	-0.05	- 90.04	0.35	0.50	0.20	0.20
after Heatling at	(C	1350	1450	1550	1650	1750	1550	1500	1400	1500	1500	1300	1400	1400	1400	1500	1400	1500
Thermal Conductivity at 400 °C	(W/m.K)	1.17	1.50	1.85	1.62	2.55	2.45	1.60	1.20	1.85	2.20	1.38	1.60	2.25	2.40	2.25	2.95	2.45
at 600 °C	(Wim.K)	1.21	1.53	1.85	1.62	2.30	2.25	1.60	1.25	1.85	2.05	1.38	1.60	2.14	2.20	2.14	2.62	2.25
at 1000 °C	(W/m.K)	1.31	1.58	1.87	1.67	2.15	2.10	1.65	1.39	1.87	2.00	1.48	1.62	2.05	2.05	2.05	2.57	2.10
Chemical Composition : Approximate)										
Alumina (Al ₃ O ₂)	*	42.0	50.0	60.0	68.0	85.0	95.0	58.0	44.0	61.0	72.0	45.0	60.0	80.0	85.0	82.0	0.06	94.5
Silica (SiO ₂)	*	45.0	37.0	29.0	24.0	7.0	3.0	38.0	52.0	34.0	23.0	51.0	33.0	12.0	9.0	12.0	5.0	4.8
Iron Oxide (Fe,O.)	*	1.0	1.1	1.1	11	1.1	0.2	1.1	1.1	1.4	1.8	1.5	1.2	1.0	0.5	1.0	1.0	0.0

Specs	Standard Grade	High-Purity Grade	Zirconia Grade
Color	White	White	White
Maximum Use Limit	2300°F	2300°F	2552°F
Continuous Use Limit	2012°F	2012°F	2462°F
Density (PCF)	10-13	10-13	10-13
Organic Content (%)	< 5%	< 5%	< 5%
Tensile Strength (PSI)	75-90	30-40	75-90
Break Strength (PSI)	10-15	10-15	10-15
Thermal Conductivity @ 600°C (1112°F) @ 800°C (1472°F) @1000°C (1832°F)	W/mk (Btu in./hr/ft ² °F) 0.08 (0.55) 0.12 (0.80) 0.18 (1.25)	0.08 (0.55) 0.11 (0.75) 0.16 (1.15)	0.08 (0.55) 0.11 (0.76) 0.17 (1.18)

Formula Fuel MM^{-1} K^{-1}_{0} <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ŀ</th><th></th></t<>											ŀ	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Formula	Fuel	MW (kg/kmol)	h ^e (kJ/kmol)	\tilde{g}_{f}^{o} (kJ/kmol)	چ (kJ/kmol-K)	HHV [†] (kJ/kg)	LHV [†] (kJ/kg)	Boiling pt. (°C)	h _{fg} (kJ/kg)	(K) ¹ 4	$ ho^{\star}_{\mathrm{lig}}$ (kg/m ³)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CH4	Methane	16.043	-74,831	-50,794	186.188	55,528	50,016	-164	509	2,226	300
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	C_2H_2	Acetylene	26.038	226.748	209,200	200.819	49.923	48.225	-84		2 530	
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	C_2H_4	Ethene	28.054	52,283	68,124	219.827	50,313	47.161	-103.7		2,369	I
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C_2H_6	Ethane	30.069	-84,667	-32,886	229.492	51,901	47,489	88.6	488	2,259	370
C,HsPropane 44.096 -103847 $-23,489$ 269.910 $50,368$ $46,357$ -42.1 425 2267 C,Hs1-Butene $56,107$ -1172 $72,036$ 307440 $48,471$ $45,319$ -63 391 2322 C,Hi n -Butene $58,123$ $-124,733$ $-15,707$ 310034 $49,546$ $45,742$ -0.5 386 2270 C,Hi n -Pentane 70.134 -20920 78.605 347607 $48,152$ $45,500$ 30 338 22373 C,Hi n -Pentane 70.134 -20920 78.605 347607 $48,152$ $45,500$ 30 338 22373 C,Hi n -Pentane 70.134 -20920 78.607 $38,601$ $45,157$ $45,355$ 36.1 338 22373 C,Hi n -Pentane 70.134 -20920 78.607 $38,5974$ $47,955$ $44,803$ 69.1 335 2232 C,Hi n -Hexane 86.177 $-66,713$ $87,027$ $385,974$ $47,955$ $44,803$ 69.1 335 2237 C,Hi n -Hexane 86.177 $-66,713$ $87,027$ $385,974$ $47,955$ $44,956$ 93.6 2274 C,Hi n -Hexane 86.177 $-66,713$ $87,027$ $385,974$ $47,955$ $44,956$ 93.4 316 2274 C,Hi n -Hexane 86.177 $-66,732$ $87,455$ $42,4383$ $47,817$ $44,655$ 93.4 316	C_3H_6	Propene	42.080	20.414	62,718	266.939	48,936	45.784	-47.4	437	2.334	514
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C_3H_8	Propane	44.096	+103,847	-23,489	269.910	50,368	46,357	-42.1	425	2,267	200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_4H_8	1-Butene	56,107	1,172	72,036	307.440	48,471	_ 45.319	-63	391	2.322	595
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{4}H_{10}$	n-Butane	58.123	-124,733	-15,707	310.034	49,546	45,742	-0.5	386	2,270	579
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{SH_{10}}$	1-Pentene	70.134	-20,920	78,605	347.607	48,152	45,000	30	358	2.314	641
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C ₅ H ₁₂	n-Pentane	72.150	-146,440	-8,201	348.402	49,032	45,355	36.1	358	2,272	626
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	C_6H_6	Benzene	78.113	82,927	129,658	269.199	42,277	40,579	80.1	393	2.342	879
GeH1 n -Hexane86.177 -167.193 209386.811 48.696 $45,105$ 69 335 2.273 CrH1a 1 -Heptene 98.188 -62.132 95.563 424.383 47.817 44.665 93.6 -1 2.305 CrH1a 1 -Heptene 98.188 -62.132 95.563 424.383 47.817 44.665 93.6 -1 2.305 CrH1a 1 -Heptanc 100.203 -187.820 8.745 425.262 48.456 44.926 98.4 316 2.274 CaH1a 1 -Octane 112.214 -82.927 104.140 462.792 47.712 44.656 121.33 -1 2.302 GaH1a n -Octane 112.214 -82.927 104.140 462.792 47.712 44.560 121.3 -1 2.302 GaH1a n -Octane 112.214 -82.927 104.140 462.792 47.712 44.650 121.3 -1 2.302 GaH1a n -Octane 112.214 -82.927 104.140 462.792 47.712 44.670 121.3 -1 GaH1a n -Octane 114.230 -208.447 17.322 463.671 48.275 44.791 125.77 300 2.275 GaH1a n -Octane 124.236 -124.139 122.717 501.243 47.655 44.413 170.6 -1 2.306 GuH2a n -Nonane 128.257 -229.032 25.855 502.080 47.565 44.41	C_6H_{12}	1-Hexene	84.361	41,673	87,027	385.974	47,955	44,803	63.4	335	2,308	673
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₄	n-Hexane	86.177	-167,193	209	386.811	48,696	45,105	69	335	2,273	659
$ \begin{array}{rccccc} C_{7}H_{16} & n-Heptanc & 100.203 & 187,820 & 8,745 & 425.262 & 48,456 & 44,926 & 98,4 & 316 & 2,274 \\ C_{8}H_{16} & 1-Octane & 112.214 & 82,927 & 104,140 & 462.792 & 47,712 & 44,560 & 121.3 & - & 2,302 \\ C_{8}H_{18} & n-Octane & 112.214 & 82,927 & 104,140 & 462.792 & 47,712 & 44,560 & 121.3 & - & 2,302 \\ C_{9}H_{18} & 1-Nonene & 126.241 & -103,512 & 112,717 & 501.243 & 47,631 & 44,478 & - & - & 2,300 \\ C_{9}H_{20} & n-Nonane & 126.241 & -103,512 & 112,717 & 501.243 & 47,631 & 44,478 & - & - & 2,300 \\ C_{9}H_{20} & n-Nonane & 128.257 & -229,032 & 25,857 & 502.080 & 48,134 & 44,686 & 150.8 & 295 & 2,276 \\ C_{10}H_{20} & 1-Decene & 140.268 & -124,139 & 121,294 & 539.652 & 47,555 & 44,413 & 170.6 & - & 2,298 \\ C_{10}H_{22} & n-Decane & 142.284 & -249,659 & 34,434 & 540.531 & 48,020 & 44,602 & 174.1 & 277 & 2,278 \\ C_{11}H_{24} & 1-Undecene & 154.295 & -144,766 & 129,830 & 578.061 & 47,512 & 44,360 & & - & 2,298 \\ C_{11}H_{24} & n-Undecene & 154.295 & -144,766 & 129,830 & 578.061 & 47,512 & 44,502 & & - & 2,298 \\ C_{11}H_{24} & n-Undecene & 154.295 & -144,766 & 129,830 & 578.061 & 47,512 & 44,502 & & - & - & 2,296 \\ C_{11}H_{24} & n-Undecene & 156.311 & -270,286 & 43,012 & 578.940 & 47,926 & 44,532 & 195.9 & 265 & 2,277 \\ \end{array}$	C_7H_{14}	I-Heptene	98.188	-62,132	95,563	424.383	47,817	44,665	93.6		2.305	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₆	n-Heptanc	100.203	-187,820	8,745	425.262	48,456	44,926	98.4	316	2,274	684
$ \begin{array}{rcrccc} C_8H_{18} & n-Octane & 114.230 & -208,447 & 17,322 & 463.671 & 48,275 & 44,791 & 125.7 & 300 & 2,275 \\ C_9H_{18} & 1-Nonene & 126.241 & -103,512 & 112,717 & 501.243 & 47,631 & 44,478 & & 2,300 \\ C_9H_{20} & n-Nonane & 126.241 & -103,512 & 112,717 & 501.243 & 47,631 & 44,478 & & 2,300 \\ C_{10}H_{20} & n-Nonane & 128.257 & -229,032 & 25,857 & 502.080 & 48,134 & 44,686 & 150.8 & 295 & 2,276 \\ C_{10}H_{20} & 1-Decene & 140.268 & -124,139 & 121,294 & 539.652 & 47,565 & 44,413 & 170.6 & & 2,298 \\ C_{10}H_{22} & n-Decane & 142.284 & -249,659 & 34,434 & 540.531 & 48,020 & 44,602 & 174.1 & 277 & 2,277 \\ C_{11}H_{21} & 1-Undecene & 154.295 & -144,766 & 129,830 & 578.061 & 47,512 & 44,360 & & - & 2,296 \\ C_{11}H_{24} & n-Undecene & 156.311 & -270,286 & 43,012 & 578.940 & 47,926 & 44,532 & 195.9 & 265 & 2,277 \\ \end{array}$	C8H16	1-Octene	112.214	-82,927	104,140	462.792	47,712	44,560	121.3		2.302	ļ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₈ H ₁₈	n-Octane	114.230	-208,447	17,322	463.671	48,275	44,791	125.7	300	2,275	703
$ \begin{array}{rcrcrc} C_{0}H_{20} & n-Nonane & 128.257 & -229,032 & 25,857 & 502.080 & 48,134 & 44,686 & 150.8 & 295 & 2,276 \\ C_{10}H_{20} & 1-Decene & 140.268 & -124,139 & 121,294 & 539.652 & 47,565 & 44,413 & 170.6 & - & 2,298 \\ C_{10}H_{22} & n-Decane & 142.284 & -249,659 & 34,434 & 540.531 & 48,020 & 44,602 & 174.1 & 277 & 2,277 \\ C_{11}H_{22} & 1-Undecene & 154.295 & -144,766 & 129,830 & 578.061 & 47,512 & 44,360 & - & & - & 2,296 \\ C_{11}H_{24} & n-Undecene & 156.311 & -270,286 & 43,012 & 578.940 & 47,926 & 44,532 & 195.9 & 265 & 2,277 \\ \end{array} $	C ₉ H ₁₈	1-Nonene	126.241	-103,512	112,717	501.243	47,631	44,478			2.300	1
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	C ₉ H ₂₀	n-Nonane	128.257	-229,032	25,857	502.080	48,134	44,686	150.8	295	2,276	718
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{10}H_{20}$	I-Decene	140.268	-124,139	121,294	539.652	47,565	44,413	170.6	ł	2.298	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{10}H_{22}$	n-Decane	142.284	-249,659	34,434	540.531	48,020	44,602	174.1	277	2,277	730
C ₁₁ H ₂₄ <i>n</i> -Undecane 156.311 -270,286 43,012 578.940 47,926 44,532 195.9 265 2,277	C11H22	1-Undecene	154.295	-144,766	129,830	578.061	47,512	44,360		I	2.296	ļ
	$C_{11}H_{24}$	n-Undecane	156.311	-270,286	43,012	578.940	47,926	44,532	195.9	265	2,277	740

Table B.1 Selected properties of hydrocarbon fuels: enthalpy of formation,^a Gibbs function of formation,^a entropy,^a and higher and lower heating values all at 298.15 K and 1 atm; boiling points^b and latent heat of vaporization^c at 1 atm; constant-pressure adiabatic flame temperature at 1 atm;^d

Т (К)	ρ (kg/m ³)	с _р (kJ/kg-K)	$\frac{\mu \cdot 10^7}{(\text{N-s/m}^2)}$	$v \cdot 10^6$ (m ² /s)	k · 10 ³ (W/m-K)	α · 10 ⁶ (m ² /s)	Pr
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1,000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1,100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1,200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1,300	0.2679	1.189	496.0	185.1	82	238	0.719
1,400	0.2488	1.207	530	213	91	303	0.703
1,500	0.2322	1.230	557	240	100	350	0.685
1,600	0.2177	1.248	584	268	106	390	0.688

Table C.1	Selected	properties	of	air	at	1 atm ^a
			-	_	_	

Fuels	Lower Heating Value (LHV) [1]				Higher Hea	Density		
Gaseous Fuels @ 32 F and 1 atm	Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]		Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]	grams/ft3
Natural gas	983	20,267	47.141		1089	22,453	52.225	22.0
Hydrogen	290	51,682	120.21		343	61,127	142.18	2.55
Still gas (in refineries)	1458	20,163	46.898		1,584	21,905	50.951	32.8
Liquid Fuels	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]		Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	grams/gal
Crude oil	129,670	18,352	42.686		138,350	19,580	45.543	3,205
Conventional gasoline	116,090	18,679	43.448		124,340	20,007	46.536	2,819
Reformulated or low-sulfur gasoline	113,602	18,211	42.358		121,848	19,533	45.433	2,830
CA reformulated gasoline	113,927	18,272	42.500		122,174	19,595	45.577	2,828
U.S. conventional diesel	128,450	18,397	42.791		137,380	19,676	45.766	3,167
Low-sulfur diesel	129,488	18,320	42.612		138,490	19,594	45.575	3,206
Petroleum naphtha	116,920	19,320	44.938		125,080	20,669	48.075	2,745
NG-based FT naphtha	111,520	19,081	44.383		119,740	20,488	47.654	2,651
Residual oil	140,353	16,968	39.466		150,110	18,147	42.210	3,752
Methanol	57,250	8,639	20.094		65,200	9,838	22.884	3,006
Ethanol	76,330	11,587	26.952		84,530	12,832	29.847	2,988
Butanol	99,837	14,775	34.366		108,458	16,051	37.334	3,065
Acetone	83,127	12,721	29.589		89,511	13,698	31.862	2,964
E-Diesel Additives	116.090	18.679	43,448		124,340	20.007	46.536	2.819
Liquefied petroleum gas (LPG)	84,950	20.038	46.607		91,410	21,561	50.152	1,923
Liquefied natural gas (LNG)	74,720	20,908	48.632		84,820	23,734	55.206	1.621
Dimethyl ether (DME)	68,930	12 417	28.882		75,610	13,620	31,681	2,518
Dimethoxy methane (DMM)	72,200	10.061	23,402		79,197	11.036	25.670	3,255
Methyl ester (biodiesel BD)	119 550	16 134	37 528		127 960	17 269	40 168	3 361
Fischer-Tropsch diesel (FTD)	123 670	18 593	43 247		130 030	19 549	45 471	3 0 1 7
Renewable Diesel I (SuperCetane)	117 059	18 729	43 563		125 294	20 047	46 628	2 835
Renewable Diesel II (UOP-HDO)	122,887	18 908	43.979		130,817	20,128	46.817	2,948
Renewable Gasoline	115 983	18 590	43 239		124 230	19,911	46 314	2 830
Liquid Hydrogen	30 500	51 621	120.07		36 020	60 964	141.80	268
Methyl tertiary butyl ether (MTRE)	93 540	15 094	35 108		101 130	16 319	37 957	2,811
Ethyl tertiany butyl ether (ETBE)	96 720	15,613	36 315		104,530	16,873	39 247	2,810
Tertiary amyl methyl ether (TAME)	100,480	15,646	36 392		108,570	16,906	39 322	2,010
Rutane	04 070	19,046	45 277		103,220	21 157	49 210	2,010
Isobutano	00,060	10,297	44.962		08 560	21,107	49.006	2,210
Isobutylene	95,000	19,207	44.002		103.010	21,100	49.030	2,110
Pronane	84 250	19,271	44.024		91 420	20,739	40.230	1 920
Solid Fuels	Btu/top [2]	Btu/lb [5]	M 1/kg [4]	I D	Btu/ton [2]	Btu/lb [5]	M.I/kg [4]	1,520
Coal (wet basis) [6]	19 546 300	9 773	22 732	AC A	20,608,570	10 304	23.968	
Bituminous coal (wet basis) [7]	22 460 600	11,230	26 122		23 445 900	11 723	27 267	
Coking coal (wet basis)	24 600 497	12 300	28 610		25 679 670	12 840	29.865	
Earmed trees (dry basis)	16 811 000	8 406	19 551		17 703 170	8 852	20.589	
Herbaceous biomass (dry basis)	14 797 555	7 399	17 209		15 582 870	7 791	18 123	
Corn stover (dn/ basis)	14 075 000	7.039	16 370		14 974 460	7 / 97	17 / 15	
Forest residue (dry basis)	13 2/3 /00	6 622	15 402		14 164 160	7.082	16.472	
Sugar cane bagasse	12 947 318	6 474	15.058		14,062,679	7,002	16 355	
Petroleum coko	25 370 000	12 695	20.605		26,022,078	13,460	21 209	
reubleuill coke	20,370,000	12,000	29,000	//ds	20,920,000	15,400	31.306	

Section: Appendix A Lower and Higher Heating Values of Gas, Liquid and Solid Fuels

ประวัติผู้เขียน

- **ชื่อ สกุล** ว่าที่ร้อยตรีหญิงวัชรินทร์ กลับสูงเนิน **วัน เดือน ปีเกิด** 26 มรกราคม 2529
- ที่อยู่ 105/214 หมู่ 3 ตำบลลำผักกูด อำเภอธัญบุรี จังหวัดปทุมธานี 12110
- **การศึกษา** ปริญญาตรี คณะวิศวกรรมศาสตร์ สาขาวิศวกรรมเครื่องจักรกลการเกษตร มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

ประสบการณ์การทำงาน

-ผู้ช่วยผู้จัดการโรงงานวิจัยและพัฒนาผลิตภัณฑ์ บริษัทโรงงานไทยเซน จำกัด พศ. 2553 ถึง พศ.2555

-วิศวกรวิจัยและพัฒนาผลิตภัณฑ์ บริษัท เอส ซี จี (ไทยแลนด์) จำกัด พศ.2555 ถึง พศ.2556

-ลูกจ้างเหมา สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย พศ.2557 ถึง พศ.2558

-ผู้ช่วยนักวิจัย สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย พศ.2558 ถึง พศ.2560

-นักวิจัย สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย พศ.2560 ถึง ปัจจุบัน

เบอร์โทรศัพท์ อีเมล์

aaaawatcharin@gmail.com

080-624 0568

