QUASI-SMALL PRINCIPALLY-INJECTIVE MODULES

PASSAKORN YORDSORN

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI ACADEMIC YEAR 2012

COPYRIGHT OF RAJAMANGALA UNIVERSITY
OF TECHNOLOGY THANYABURI

QUASI-SMALL PRINCIPALLY-INJECTIVE MODULES

PASSAKORN YORDSORN

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI ACADEMIC YEAR 2012

COPYRIGHT OF RAJAMANGALA UNIVERSITY
OF TECHNOLOGY THANYABURI

Thesis Title	Quasi-Small Principally-Injective Modules
Name - Surname	Mr. Passakorn Yordsorn
Program	Mathematics
Thesis Advisor	Assistant Professor Sarun Wongwai, Ph.D.
Academic Year	2012

THESIS COMMITTEE

(Assistant Professor Maneenat Kaewneam, Ph.D.)

Approved by the Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi in Partial Fulfillment of the Requirements for the Master's Degree

(Assistant Professor Sirikhae Pongswat, Ph.D.)

Date...10...Month...March...Years...2013..

Thesis Title
Name - Surname
Program
Thesis Advisor
Academic Year
Quasi-Small Principally-Injective Modules
Mr. Passakorn Yordsorn
Mathematics
Assistant Professor Sarun Wongwai, Ph.D. 2012

Abstract

The purposes of this thesis are to (1) study properties and characterizations of quasi-small

 principally-injective modules, (2) study properties and characterizations of endomorphism rings of quasi-small principally-injective modules, (3) extend the concepts of quasi-principally injective modules, and (4) find some relations between quasi-principally injective modules, quasi-small principally-injective modules and projective modules.Let R be a ring. A right R-module M is called principally injective if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M. A right R-module N is called M-principally injective if every R-homomorphism from an M-cyclic submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-principally injective if it is M-principally injective. The notion of quasi-principally injective modules is extended to be quasi-small principally-injective modules. A right R-module N is called M-small principally-injective if every R-homomorphism from an M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-small principally-injective if it is M-small principally-injective.

The results are as follows. (1) The following conditions are equivalent for a projective module $M:$ (a) every M-cyclic small submodule of M is projective; (b) every factor module of an M-small principally-injective module is M-small principally-injective; (c) every factor module of an injective R-module is M-small principally-injective. (2) Let M be a right R-module and $S=E n d_{R}(M)$. Then the following conditions are equivalent: (a) M is quasi-small principally-injective; (b) $l_{S}(\operatorname{Ker}(s))=S S$ for all $s \in S$ with $s(M) \ll M$; (c) $\operatorname{Ker}(s) \subset \operatorname{Ker}(t)$, where $s, t \in S$ with $s(M) \ll M$, implies $S t \subset S s$; (d) $l_{S}(\operatorname{Ker}(s) \cap \operatorname{Im}(t))=l_{S}(\operatorname{Im}(t))+S s$ for all $s, t \in S$ with $s(M) \ll M$. (3) Let M be a principal module which is a self generator. If M is quasi-small principally-injective, then: (a) if $s S \oplus t S$
and $S s \oplus S t$ are both direct, $s, t \in J(S)$, then $l_{M}(s)+l_{M}(t)=S$; (b) $l_{S} r_{M}(S s)=S s$ for any $s \in J(S)$. (4) Let M be a quasi-small principally-injective module, $s, t \in S$ and $s(M)_{\star} \ll M$: (a) if $s(M)$ embeds in $t(M)$, then $S s$ is an image of $S t$; (b) if $t(M)$ is an image of $s(M)$, then $S t$ embeds in $S s$; (c) if $s(M) \cong t(M)$, then $S S \cong S t$.

Keywords: quasi principally-injective modules, quasi-small principally-injective modules, endomorphism rings

หัวข้อวิทยานิพนธ์	มอดูลแบบควอซี-สมอลพรินซิแพ็ลลิ-อินเจคทีฟ
ชื่อ-นามสกุล	นายภาสกรณ์ ยอดสอน
สาขาวิชา	คณิตศาสตร์
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์ ศรัณย์ ว่องไว, วท.ด.
ปีการศึกษา	2555
	บทคัดย่อ

วิทยานิพนธ์นี้มีวัตถุประสงค์เพื่อ (1) ศึกษาสมบัติและลักษณะเฉพาะของ ควอซี-สมอล พรินซิแพ็ลลิ-อินเจคทีฟมอดูล (2) ศึกษาสมบัติและลักษณะเฉพาะของริงอันตรสัณฐานของ ควอซี-สมอลพรินซิแพ็ลลิ-อินเจคทีฟมอดูล (3) ขยายแนวคิดของควอซี-พรินซิแพ็ลลิอินเจคทีฟมอดูลและ (4) หาความสัมพันธ์ระหว่าง ควอซี-พรินซิแพ็ลลิอินเจคทีฟมอดูล ควอซี-สมอลพรินซิแพ็ลลิ-อินเจค ทีฟมอดูล และโปรเจคทีฟมอดูล

กำหนดให้ R เป็นริง จะเรียก R-มอดูลทางขวา M ว่า พรินซิแพ็ลลิอินเจคทีฟ ก็ต่อเมื่อทุกๆ R-สาทิสสัณฐานจากอุดมคติมุขสำคัญทางขวาของ R ไปยัง M สามารถขยายไปยัง R-สาทิสสัณฐาน จาก R ไปยัง M จะเรียก R-มอดูลทางขวา N ว่า M-พรินซิแพ็ลลิอินเจคทีฟ ก็ต่อเมื่อทุกๆ R-สาทิส สัณฐานจาก M-วัฏจักรมอคูลย่อยของ M ไปยัง N สามารถขยายไปยัง R-สาทิสสัณฐานจาก M ไปยัง N จะเรียก R-มอดูลทางขวา M ว่า ควอซี-พรินซิแพ็ลลิอินเจคทีฟ ก็ต่อเมื่อ M เป็น M-พรินซิแพ็ลลิ อินเจคทีฟ เราขยายแนวคิดของ ควอซี-พรินซิแพ็ลลิอินเจคทีฟมอดูล มาเป็น ควอซี-สมอลพรินซิ แพ็ลลิ-อินเจคทีฟมอดูล โดยจะเรียก R-มอดูลทางขวา N ว่า M-สมอลพรินซิแพ็ลลิ-อินเจคทีฟ ก็ต่อเมื่อ ทุกๆ R-สาทิสสัณฐานจากมอดูลย่อยแบบ M-วัฏจักรและสมอลของ M ไปยัง N สามารถขยายไปยัง R-สาทิสสัณฐานจาก M ไปยัง N จะเรียก R-มอดูลทางขวา M ว่า ควอซี-สมอลพรินซิแพ็ลลิ-อินเจคทีฟ ก็ต่อเมื่อ M เป็น M-สมอลพรินซิแพ็ลลิ-อินเจคทีฟ

ผลการวิจัยพบว่า (1) สำหรับโปรเจคทีฟมอดูล M จะได้ว่าเงื่อนไขดังต่อไปนี้มีความสมมูล กัน (a) ทุกๆมอดูลย่อยแบบ M-วัฏจักรและสมอลของ M เป็นโปรเจคทีฟ (b) ทุกๆมอดูลผลหารของ มอดูลแบบ M-สมอล พรินซิแพ็ลลิ-อินเจคทีฟ เป็น M-สมอล พรินซิแพ็ลลิ-อินเจคทีฟ (c) ทุกๆมอดูล ผลหารของอินเจคทีฟ R-มอดูล เป็น M-สมอล พรินซิแพ็ลลิ-อินเจคทีฟ (2) กำหนดให้ M เป็น R-มอดูล ทางขวา และ $S=\operatorname{End}_{R}(M)$ แล้วจะได้ว่าเงื่อนไขดังต่อไปนี้มีความสมมูลกัน (a) M เป็น ควอซี-

สมอลพรินซิแพ็ลลิ-อินเจคทีฟ (b) $l_{S}(\operatorname{Ker}(s))=S s$ สำหรับทุกๆ $s \in S$ โดยที่ $s(M)<M$ (c) $\operatorname{Ker}(s) \subset \operatorname{Ker}(t)$ โดยที่ $s, t \in S$ และ $s(M) \ll M$, แล้วจะได้ว่า $S t \subset S s$ (d) $l_{S}(\operatorname{Ker}(s) \cap \operatorname{Im}(t))=l_{S}(\operatorname{Im}(t))+S s$ สำหรับทุกๆ $s, t \in S$ โดยที่ $s(M) \ll M$ (3) กำหนดให้ M เป็นพรินซิแพ็ลมอดูลซึ่งก่อกำเนิดตัวเอง ถ้า M เป็น ควอซี-สมอลพรินซิแพ็ลลิอินเจคทีฟ แล้วจะได้ว่า (a) ถ้า $s S \oplus t S$ และ $\overline{S s} \oplus S t$ เป็นผลบวกตรง โดยที่ $s, t \in J(S)$, แล้วจะ ได้ว่ว $l_{M}(s)+l_{M}(t)=S \quad$ (b) $l_{S} r_{M}(S s)=S s$ สำหรับแต่ละ $s \in J(S)$ (4) กำหนดให้ M เป็น ควอซี-สมอลพรินซิแพ็ลลิ-อินเจคทีฟมอดูล โดยที่ $s, t \in S$ และ $s(M) \ll M$ (a) ถ้า $s(M)$ ฝังใน $t(M)$ แล้วจะ ได้ว่า $S s$ เป็นภาพของ $S t$ (b) ถ้า $t(M)$ เป็นภาพของ $s(M)$ แล้วจะได้ว่า $S t$ ฝังใน $S s$ (c) ถ้า $s(M)$ ไอโซมอร์ฟิก $t(M)$ แล้วจะได้ว่า $S s$ ไอโซมอร์ฟิก $S t$

คำสำคัญ: มอดูลแบบควอซีพรินซิแพ็ลลิ-อินเจคทีฟ มอดูลแบบควอซี-สมอลพรินซิแพ็ลลิ-อินเจคทีฟ ริงอันตรสัณฐาน

Acknowledgements

For this thesis, first of all, I would like to express my sincere gratitude to my thesis advisor Assistant Professor Dr. Sarun Wongwai for the valuable of guidance and encouragement which helped me in all the time of my research.

Secondly, I would like to thank to the thesis committees, Associate Professor Virat Chansiriratana, Assistant Professor Nangnouy Songkampol and Assistant Professor Dr. Maneenat Kaewneam for their valuable comments and helpful suggestions.

Thirdly, I would like to thank to all of the lecturers Assistant Professor Dr. Gumpon Sritanratana and Dr. Nopparat Pochai for their valuable lectures and experiences while I was studying.

Finally, I would like to thank to my mother for all her love and encouragement.

Table of Contents

Page
Abstract. iii
Acknowledgements v
Table of Contents. vi
List of Abbreviations viii
CHAPTER
1 INTRODUCTION
1.1 Background and Statement of the Problems 1
1.2 Purpose of the Study 1
1.3 Research Questions and Hypothesis. 2
1.4 Theoretical Perspective. 2
1.5 Delimitations and Limitations of the Study 2
1.6 Significance of the Study 3
2 LITERATURE REVIEW
2.1 Rings, Modules, Submodules and Endomorphism Rings 4
2.2 Essential and Superfluous Submodules 8
2.3 Annihilators and Singular Modules. 9
2.4 Maximal and Minimal Submodules 10
2.5 Injective and Projective Modules. 11
2.6 Direct Summands and Product of Modules 12
2.7 Generated and Cogenerated Classes. 15
2.8 The Trace and Reject 16
2.9 Socle and Radical of Modules 17
2.10 The Radical of a Ring. 18
3 RESEARCH RESULT
3.1 M-small P-injective Modules. 20
3.2 Quasi-small P-injective Modules 26
List of References 34

Table of Contents (Continued)
Page
Appendix 36
Curriculum Vitae. 47

List of Abbreviations

List of Abbreviations (Continued)

CHAPTER 1

INTRODUCTION

In modules and rings theory research field, there are three methods for doing the research. Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings. Secondly, to study about the modules over special rings. Thirdly, to study about ring R by way of the categories of R-modules. Many mathematicians have concentrated on these methods.

1.1 Background and Statement of the Problems

Many generalizations of the injectivity were obtained, e.g., principally injectivity and mininjectivity. In [2], V. Camillo introduced the definition of principally injective modules by calling a right R-module M is principally injective if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M.

In [7], Nicholson and Yousif studied to the structure of principally injective rings and gave some applications of these rings. A ring R is called right principally injective if every R-homomorphism from a principal right ideal of R to R can be extended to an R-homomorphism from R to R.

In [12], L.V. Thuyet, and T.C. Quynh introduced the definitions of a small principally module. A right R-module M is called small principally injective if every R-homomorphism from a small and principal right ideal $a R$ to M can be extended to an R-homomorphism from R to M.

In [10], N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai introduced the definitions of quasi principally injective modules. A right R-module M is called quasi-principally injective if every R-homomorphism from an M-cyclic submodule of M to M can be extended to M.

1.2 Purpose of the Study

In this thesis, we have the purposes of study which are to extend concept of the previous works and to generalize new concepts which are :

1.2.1 To extend the concept of principally injective modules [2].

1.2.2 To generalize the concept of quasi principally injective modules [10].
1.2.3 To establish and extend some new concepts which are dual to quasi principallyinjective modules [10] and quasi-small principally-injective modules[19].

1.3 Research Questions and Hypothesis

We are interested in seeing to extend the characterizations and properties which remain valid from these previous concepts which can be extended from principally injective modules [2], principally-injective rings [7], mininjective modules [8], principally quasi-injective modules [9], small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].

In this research, we introduce the definition of quasi-small principally-injective modules and give characterizations and properties of these modules which are extended from the previous works. By let M be a right R-module. A right R-module N is called M-small principally injective if every R-homomorphism from an M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N. Dually, a right R-module M is called quasi-small P-injective if it is M-small P-injective. Many of results in this research are extended from principally injective rings [7], mininjective rings [8], small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].

1.4 Theoretical Perspective

In this thesis, we use many of the fundamental theories which are concerned to the rings and modules research. By the concerned theories are:
1.4.1 The fundamental of algebra theories.
1.4.2 The basic properties of rings and modules theory.

1.5 Delimitations and Limitations of the Study

For this thesis, we have the scopes and the limitations of studying which are concerned to the previous works which are:
1.5.1 To extend the concept of M-small P-injective modules.

1.5.2 To extend the concept of quasi-small P-injective modules.

1.5.3 To characterize the concept in 1.5 .2 and find some new properties.

1.6 Significance of the Study

The advantage of education and studying in this research, we can improve and develop the concepts and knowledge in the algebra and modules research field.

CHAPTER 2

LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the modules and rings theory which are used in this thesis.

2.1 Rings, Modules, Submodules and Endomorphism Rings

This section is assembled summary of various notations, terminology and some background theories which are concerned and used for this thesis.
2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary operations + and \cdot, called addition and multiplication (also called product), respectively, such that
(1) $(R,+)$ is an additive abelian group.
(2) (R, \cdot) is a multiplicative semigroup.
(3) Multiplication is distributive (on both sides) over addition; that is, for all $a, b, c \in R, a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.

The two distributive laws are respectively called the left distributive law and the right distributive law.

A commutative ring is a ring R in which multiplication is commutative; i.e. if $a \cdot b=$ $b \cdot a$ for all $a, b \in R$. If a ring is not commutative it is called noncommutative.

A ring with unity is a ring R in which the multiplicative semigroup (R, \cdot) has an identity element; that is, there exists $e \in R$ such that $e a=a=a e$ for all $a \in R$. The element e is called unity or the identity element of R. Generally, the unity or identity element is denoted by 1 .

In this thesis, R will be an associative ring with identity.
2.1.2 Definition. [14] A nonempty subset I of a ring R is called an ideal of R if
(1) $a, b \in I$ implies $a-b \in I$.
(2) $a \in I$ and $r \in R$ imply $a r \in I$ and $r a \in I$.
2.1.3 Definition. [13] A subgroup I of $(R,+)$ is called a left ideal of R if $R I \subset I$, and a right ideal if $I R \subset I$.
2.1.4 Definition. [14] A right ideal I of a ring R is called principal if $I=a R$ for some $a \in R$.
2.1.5 Definition. [14] Let R be a ring, M an additive abelian group and $(m, r) \mapsto m r$, a mapping of $M \times R$ into M such that
(1) $m r \in M$
(2) $\left(m_{1}+m_{2}\right) r=m_{1} r+m_{2} r$
(3) $m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}$
(4) $\left(m r_{1}\right) r_{2}=m\left(r_{1} r_{2}\right)$
(5) $m \cdot 1=m$
for all $r, r_{1}, r_{2} \in R$ and $m, m_{1}, m_{2} \in M$. Then M is called a right R-module, often written as M_{R}.
Often $m r$ is called the scalar multiplication or just multiplication of m by r on right. We define left R-module similarly.
2.1.6 Definition. [13] Let M be a right R-module. A subgroup N of $(M,+)$ is called a submodule of M if N is closed under multiplication with elements in R, that is $n r \in N$ for all $n \in N$, $r \in R$. Then N is also a right R-module by the operations induced from M :

$$
N \times R \rightarrow N,(n, r) \mapsto n r, \text { for all } n \in N, r \in R .
$$

2.1.7 Proposition. A subset N of an R-module M is a submodule of M if and only if
(1) $0 \in N$.
(2) $n_{1}, n_{2} \in N$ implies $n_{1}-n_{2} \in N$.
(3) $n \in N, r \in R$ implies $n r \in N$.

Proof. See [15, Lemma 5.3].
2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of M. Then the set of cosets

$$
M / K=\{x+K \mid x \in M\}
$$

is a right R-module relative to the addition and scalar multiplication defined via

$$
(x+K)+(y+K)=(x+y)+K \quad \text { and } \quad(x+K) r=x r+K
$$

The additive identity and inverses are given by

$$
K=0+K \quad \text { and } \quad-(x+K)=-x+K .
$$

The module M / K is called (the right R-factor module of) M modulo K or the factor module of M by K.
2.1.9 Definition. [13] Let M and N be right R-modules. A function $f: M \rightarrow N$ is called an (R-module) homomorphism if for all $m, m_{1}, m_{2} \in M$ and $r \in R$

$$
f\left(m_{1} r+m_{2}\right)=f\left(m_{1}\right) r+f\left(m_{2}\right)
$$

Equivalently, $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$ and $f(m r)=f(m) r$.
The set of R-homomorphisms of M in N is denoted by $\operatorname{Hom}_{R}(M, N)$. In particular, with this addition and the composition of mappings, $\operatorname{Hom}_{R}(M, M)=E n d_{R}(M)$ becomes a ring, called the endomorphism ring of M and $f \in \operatorname{End}_{R}(M)$ is called an R-endomorphism. [13, 6.4]
2.1.10 Definition. [1] Let $f: M \rightarrow N$ be an R-homomorphism. Then
(1) f is called R-monomorphism (or R-monic) if f is injective (one-to-one).
(2) f is called R-epimorphism (or R-epic) if f is surjective (onto).
(3) f is called R-isomorphism if f is bijective (one-to-one and onto).

Two modules M and N are said to be R-isomorphic, abbreviated $M \cong N$ in case there is an R-isomorphism $f: M \rightarrow N$.
2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping $\eta_{K}: M \rightarrow M / K$ from M onto the factor module M / K defined by

$$
\eta_{K}(x)=x+K \in M / K \quad(x \in M)
$$

is seen to be an R-epimorphism with kernel K. We call η_{K} the natural epimorphism of M onto M / K.
2.1.12 Definition. [1] Let $A \subset B$. Then the function $l=l_{A} \subset B_{B}: A \rightarrow B$ defined by $l=\left(1_{B \mid A}\right): a \mapsto a$ for all $a \in A$ is called the inclusion map of A in B. Note that if $A \subset B$ and $A \subset C$, and if $B \neq C$, then $l_{A \subset B} \neq l_{A \subset C}$. Of course $1_{A}=l_{A \subset A}$.
2.1.13 Definition. [14] Let M and N be right R-modules and let $f: M \rightarrow N$ be an R-homomorphism. Then the set

$$
\operatorname{Ker}(f)=\{x \in M \mid f(x)=0\} \text { is called the kernel of } f
$$

and

$$
f(M)=\{f(x) \in N \mid x \in M\} \text { is called the homomorphic image (or simply image) }
$$ of M under f and is denoted by $\operatorname{Im}(f)$.

2.1.14 Proposition. Let M and N be right R-modules and let $f: M \rightarrow N$ be an R-homomorphism. Then
(1) $\operatorname{Ker}(f)$ is a submodule of M.
(2) $\operatorname{Im}(f)=f(M)$ is a submodule of N.

Proof. See [13, 6.5].
2.1.15 Proposition. Let M and N be right R-modules and let $f: M \rightarrow N$ be an R-isomorphism. Then the inverse mapping $f^{-1}: N \rightarrow M$ is an R-isomorphism.

Proof. See [14, Chapter 14, 3].
2.1.16 Theorem. Let M, M^{\prime}, N and N^{\prime} be right R-modules and let $f: M \rightarrow N$ be an R-homomorphism.
(1) If $g: M \rightarrow M^{\prime}$ is an epimorphism with $\operatorname{Ker}(g) \subset \operatorname{Ker}(f)$, then there exists a unique homomorphism $h: M^{\prime} \rightarrow N$ such that

$$
f=h g .
$$

Moreover, $\operatorname{Ker}(h)=g(\operatorname{Ker}(f))$ and $\operatorname{Im}(h)=\operatorname{Im}(f)$, so that h is monic if and only if $\operatorname{Ker}(g)=\operatorname{Ker}(f)$ and h is epic if and only if f is epic.
(2) If $g: N^{\prime} \rightarrow N$ is a monomorphism with $\operatorname{Im}(f) \subset \operatorname{Im}(g)$, then there exists a unique homomorphism $h: M \rightarrow N^{\prime}$ such that

$$
f=g h .
$$

Moreover, $\operatorname{Ker}(h)=\operatorname{Ker}(f)$ and $\operatorname{Im}(h)=g^{\leftarrow}(\operatorname{Im}(f))$, so that h is monic if and only if f is monic and h is epic if and only if $\operatorname{Im}(g)=\operatorname{Im}(f)$.

(1)

(2)

Proof. See [1, Chapter 1, 46].
2.1.17 Definition. [20] A submodule K of the module M is fully invariant in M if $f(K) \subset K$ for every endomorphism f of M.

2.2 Essential and Superfluous Submodules

In this section, we give the definitions of essential and superfluous submodules and some theories which are used in this thesis.
2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M, abbreviated $K \subset^{e} M$, if for every submodule L of $M, K \cap L=0$ implies $L=0$.
2.2.2 Definition. [13] A submodule K of M is called superfluous (or small) in M, abbreviated $K \ll M$, if for every submodule L of $M, K+L=M$ implies $L=M$.
2.2.3 Proposition. Let M be a right R-module with submodules $K \subset N \subset M$ and $H \subset M$. Then
(1) $N \ll M$ if and only if $K \ll M$ and $N / K \ll M / K$;
(2) $H+K \ll M$ if and only if $H \ll M$ and $K \ll M$.

Proof. See [1, Proposition 5.17].
2.2.4 Proposition. If $K \ll M$ and $f: M \rightarrow N$ is a homomorphism then $f(K) \ll N$. In particular, if $K \ll M \subset N$ then $K \ll N$.

Proof. See [1, Proposition 5.18].

2.3 Annihilators and Singular Modules

In this section, we give the definitions of annihilators, singular modules and some theories which are used in this thesis.
2.3.1 Definition. [1] Let M be a right (resp. left) R-module. For each $X \subset M$, the right (resp. left) annihilator of X in R is defined by

$$
r_{R}(X)=\{r \in R \mid x r=0, \forall x \in X\}\left(\text { resp. } l_{R}(X)=\{r \in R \mid r x=0, \forall x \in X\}\right) .
$$

For a singleton $\{x\}$, we usually abbreviated to $r_{R}(x)\left(\right.$ resp. $\left.l_{R}(x)\right)$.
2.3.2 Proposition. Let M be a right R-module, let X and Y be subsets of M and let A and B be subsets of R. Then
(1) $r_{R}(X)$ is a right ideal of R.
(2) $X \subset Y$ imples $r_{R}(Y) \subset r_{R}(X)$.
(3) $A \subset B$ imples $l_{M}(B) \subset l_{M}(A)$.
(4) $X \subset l_{M} r_{R}(X)$ and $A \subset r_{R} l_{M}(A)$.

Proof. See [1, Proposition 2.14 and Proposition 2.15].
2.3.3 Proposition. Let M and N be right R-modules and let $f: M \rightarrow N$ be a homomorphism. If N^{\prime} is an essential submodule of N, then $f^{-1}\left(N^{\prime}\right)$ is an essential submodule of M. Proof. See [4, Lemma 5.8(a)].
2.3.4 Proposition. Let M be a right R-module over an arbitrary ring R, the set

$$
Z(M)=\left\{x \in M \mid r_{R}(x) \text { is essential in } R_{R}\right\}
$$

is a submodule of M.
Proof. See [4, Lemma 5.9].
2.3.5 Definition. [4] The submodule $Z(M)=\left\{x \in M \mid r_{R}(x)\right.$ is essential in $\left.R_{R}\right\}$ is called the singular submodule of M. The module M is called a singular module if $Z(M)=M$. The module M is called a nonsingular module if $Z(M)=0$.

2.4 Maximal and Minimal Submodules

In this section, we give the definitions and some properties of maximal submodules, minimal (or simple) submodules and some theories which are used in this thesis.
2.4.1 Definition. [13] A right R-module M is called simple if $M \neq 0$ and M has no submodules except 0 and M.
2.4.2 Definition. [13] A submodule K of M is called maximal submodule of M if $K \neq M$ and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if, $K \neq M$ and for every $A \subset M, K \subset A$ implies $K=A$.
2.4.3 Definition. [13] A submodule N of M is called minimal (or simple) submodule of M if $N \neq 0$ and it has no non zero proper submodules of M, i.e. N is minimal (or simple) in M if $N \neq 0$ and for every nonzero submodules A of $M, A \subset N$ implies $A=N$.
2.4.4 Proposition. Let M and N be right R-modules. If $f: M \rightarrow N$ is an epimorphism with $\operatorname{Ker}(f)=K$, then there is a unique isomorphism $\sigma: M / K \rightarrow N$ such that $\sigma(m+K)=f(m)$
for all $m \in M$.
Proof. See [1, Corollary 3.7].
2.4.5 Proposition. Let K be a submodule of M. A factor module M / K is simple if and only if K is a maximal submodule of M.

Proof. See [1, Corollary 2.10].

2.5 Injective and Projective Modules

In this section, we give the definitions of the injective modules, injective testing, projective modules and some theories which are used in this thesis.
2.5.1 Definition. [1] Let M be a right R-module. A right R-module U is called injective relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism $\varphi: K \rightarrow U$ can be extended to a homomorphism $\alpha: M \rightarrow U$.

A right R-module U is said to be injective if it is M-injective for every right R-module M.
2.5.2 Proposition. The following statements about a right R-module U are equivalent :
(1) U is injective;
(2) U is injective relative to R;
(3) For every right ideal $I \subset R_{R}$ and every homomorphism $h: I \rightarrow U$ there exists an $x \in U$ such that h is left multiplicative by x

$$
h(a)=x a \text { for all } a \in I
$$

Proof. See [1, 18.3, Baer's Criterion].
2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called projective relative to M (or U is M-projective) if for every N_{R}, every epimorphism $g: M_{R} \rightarrow N_{R}$, for every homomorphism $\gamma: U_{R} \rightarrow N_{R}$ can be lifted to an R-homomorphism $\hat{\gamma}: U \rightarrow M$.

A right R-module U is said to be projective if it is projective for every right R-module M.
2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an injective right (resp. left) R-module.

Proof. See [1, Proposition 18.6].

2.6 Direct Summands and Product of Modules

Given two modules M_{1} and M_{2} we can construct their Cartesian product $M_{1} \times M_{2}$. The structure of this product module is then determined "co-ordinatewise" from the factors $M_{1} \times M_{2}$. For this section we give the definitions of direct summand, the projection and the injection maps, product of modules and some theories which are used in this thesis.
2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called a direct summand of M if there is a submodule Y of M such that $X \cap Y=0$ and $X+Y=M$. We write $M=X \oplus Y$; such that Y is also a direct summand .
2.6.2 Definition. [1] Let M_{1} and M_{2} be R-modules. Then with their products module $M_{1} \times M_{2}$ are associated the natural injections and projections

$$
\varphi_{j}: M_{j} \rightarrow M_{1} \times M_{2} \quad \text { and } \quad \pi_{j}: M_{1} \times M_{2} \rightarrow M_{j}
$$

($j=1,2$), are defined by

$$
\varphi_{1}\left(x_{1}\right)=\left(x_{1}, 0\right), \quad \varphi_{2}\left(x_{2}\right)=\left(0, x_{2}\right)
$$

and

$$
\pi_{1}\left(x_{1}, x_{2}\right)=x_{1}, \quad \pi_{2}\left(x_{1}, x_{2}\right)=x_{2}
$$

Moreover, we have

$$
\pi_{1} \varphi_{1}=1_{M_{1}} \quad \text { and } \quad \pi_{2} \varphi_{2}=1 M_{2}
$$

2.6.3 Definition. [1] Let A be a direct summand of M with complementary direct summand B, so $M=A \oplus B$. Then

$$
\pi_{A}: a+b \mapsto a \quad(a \in A, b \in B)
$$

defines an epimorphism $\pi_{A}: M \rightarrow A$ is called the projection of M on A along B.
2.6.4 Definition. [13] Let $\left\{A_{i}, i \in I\right\}$ be a family of objects in the category C. An object P in C with morphisms $\left\{\pi_{i}: P \rightarrow A_{i}\right\}$ is called the product of the family $\left\{A_{i}, i \in I\right\}$ if :

For every family of morphisms $\left\{f_{i}: X \rightarrow A_{i}\right\}$ in the category C, there is a unique morphism $f: X \rightarrow P$ with $\pi_{i} f=f_{i}$ for all $i \in I$.

For the object P, we usually write $\prod_{i \in I} A_{i}, \prod_{I} A_{i}$ or $\prod A_{i}$. If all A_{i} are equal to A, then we put $\prod_{I} A_{i}=A^{I}$.

The morphism π_{i} are called the i-projections of the product. The definition can be described by the following commutative diagram :

2.6.5 Definition. [13] Let $\left\{M_{i}, i \in I\right\}$ be a family of R-modules and $\left(\prod_{i \in I} M_{i}, \pi_{i}\right)$ the product of the M_{i}. For $m, n \in \prod_{i \in I} M_{i}, r \in R$, using

$$
\pi_{i}(m+n)=\pi_{i}(m)+\pi_{i}(n) \quad \text { and } \quad \pi_{i}(m r)=\pi_{i}(m) r,
$$

a right R-module structure is defined on $\prod_{i \in I} M_{i}$ such that the π_{i} are homomorphisms. With this structure $\left(\prod_{i \in I} M_{i}, \pi_{i}\right)$ is the product of the $\left\{M_{i}, i \in I\right\}$ in R-module.
2.6.6 Proposition. Properties:
(1) If $\left\{f_{i}: N \rightarrow M_{i}, i \in I\right\}$ is a family of morphisms, then we get the map

$$
f: N \rightarrow \prod_{i \in I} M_{i} \quad \text { such that } \quad n \mapsto\left(f_{i}(n)\right)_{i \in I}
$$

and $\operatorname{Ker}(f)=\bigcap_{I} \operatorname{Ker}\left(f_{i}\right)$ since $f(n)=0$ if and only if $f_{i}(n)=0$ for all $i \in I$.
(2) For every $j \in I$, we have a canonical embedding

$$
\varepsilon_{j}: M_{j} \rightarrow \prod_{i \in I} M_{i}, \quad \text { such that } \quad m_{j} \mapsto\left(m_{j} \delta_{j i}\right)_{i \in I}, m_{j} \in M_{j}
$$

with $\varepsilon_{j} \pi_{j}=1_{M_{j}}$, i.e. π_{j} is a retraction and ε_{j} a coretraction.

This construction can be extended to larger subsets of I : For a subset $A \subset I$ we form the product $\prod_{i \in A} M_{i}$ and a family of homomorphisms

$$
f_{j}: \prod_{i \in A} M_{i} \rightarrow M_{j}, \quad f_{j}=\left\{\begin{array}{l}
\pi_{j} \text { for } j \in A \\
0 \text { for } j \in I-A
\end{array}\right.
$$

Then there is a unique homomorphism

$$
\varepsilon_{A}: \prod_{i \in A} M_{i} \rightarrow \prod_{i \in I} M_{i} \text { with } \varepsilon_{A} \pi_{j}=\left\{\begin{array}{l}
\pi_{j} \text { for } j \in A \\
0 \text { for } j \in I-A
\end{array}\right.
$$

The universal property of $\prod_{i \in A} M_{i}$ yields a homomorphism

$$
\pi_{A}: \prod_{i \in I} M_{i} \rightarrow \prod_{i \in A} M_{i} \text { with } \pi_{A} \pi_{j}=\pi_{j} \text { for } j \in I
$$

Together this implies $\varepsilon_{A} \pi_{A} \pi_{j}=\varepsilon_{A} \pi_{j}=\pi_{j}$ for all $j \in I$, and by the properties of the product $\prod_{i \in A} M_{i}$, we get $\varepsilon_{A} \pi_{A}=1_{M_{A}}$.

Proof. See [13, 9.3, Properties (1), (2)]
2.6.7 Definition. [1] We say $\left(M_{\alpha}\right)_{\alpha \in A}$ is independent in case for each $\alpha \in A$

$$
M_{\alpha} \cap\left(\sum_{\beta \neq \alpha} M_{\beta}\right)=0 .
$$

If the submodules $\left(M_{\alpha}\right)_{\alpha \in A}$ of M are independent, we say that the sum $\sum_{A} M_{\alpha}$ is direct and write

$$
\sum_{A} M_{\alpha}=\oplus_{A} M_{\alpha}
$$

2.6.8 Proposition. [1] Let $\left(M_{\alpha}\right)_{\alpha \in A}$ be an indexed set of submodules of a module M with inclusion maps $\left(i_{\alpha}\right)_{\alpha \in A}$. Then the following are equivalent:
(a) $\sum_{A} M_{\alpha}$ is the internal direct sum of $\left(M_{\alpha}\right)_{\alpha \in A}$;
(b) $i=\underset{A}{\oplus} i_{\alpha}: \oplus_{A} M_{\alpha} \rightarrow M$ is monic;
(c) $\left(M_{\alpha}\right)_{\alpha \in A}$ is independent;
(d) $\left(M_{\alpha}\right)_{\alpha \in F}$ is independent for every finite subset $F \subset A$;
(e) For every pair $B, C \subset A$, if $B \cap C=\varnothing$, then

$$
\left(\sum_{B} M_{\beta}\right) \cap\left(\sum_{C} M_{\gamma}\right)=0 .
$$

Proof. See [1, Proposition 6.10].

2.7 Generated and Cogenerated Classes

In this section, we give some definitions and theories of the generated and cogenerated classes which are concerned in this thesis.
2.7.1 Definition. [13] A subset X of a right R-module M is called a generating set of M if $X R=M$. We also say that X generates M or M is generated by X. If there is a finite generating set in M, then M is called finitely generated.
2.7.2 Definition. [1] Let U be a class of right R-modules. A module M is (finitely) generated by $U \ell$ (or U (finitely) generates M) if there exists an epimorphism

$$
\bigoplus_{i \in I} U_{i} \rightarrow M
$$

for some (finite) set I and $U_{i} \in U$ for every $i \in I$.
If $U=\{U\}$ is a singleton, then we say that M is (finitely) generated by U or (finitely) U-generates; this means that there exists an epimorphism

$$
U^{(I)} \rightarrow M
$$

for some (finite) set I.
2.7.3 Proposition. If a module M has a generating set $L \subset M$, then there exists an epimorphism

$$
R^{(L)} \rightarrow M
$$

Moreover, M is finitely R-generated if and only if M is finitely generated.
Proof. See [1, Theorem 8.1].
2.7.4 Definition. [17] Let M be a right R-module. A submodule N of M is said to be an M-cyclic submodule of M if it is the image of an endomorphism of M.
2.7.5 Definition. [1] Let ℓ be a class of right R-modules. A module M is (finitely) cogenerated by $U_{0}($ or U (finitely) cogenerates $M)$ if there exists a monomorphism

$$
M \rightarrow \prod_{i \in I} U_{i}
$$

for some (finite) set I and $U_{i} \in U$ for every $i \in I$.
If $\mathrm{U}=\{U\}$ is a singleton, then we say that a module M is (finitely) cogenerated by U or (finitely) U-cogenerates; this means that there exists a monomorphism

$$
M \rightarrow U^{I}
$$

for some (finite) set I.

2.8 The Trace and Reject

In this section, we give some definitions and theories of the trace and reject which are concerned in this thesis.
2.8.1 Definition. [1] Let U be a class of right R-modules. The trace of U in M and the reject of U in M are defined by

$$
\operatorname{Tr}_{M}(U)=\sum\{\operatorname{Im}(h) \mid h: U \rightarrow M \text { for some } U \in U\}
$$

and

$$
R e j_{M}\left(थ_{0}\right)=\bigcap\{\operatorname{Ker}(h) \mid h: M \rightarrow U \text { for some } U \in U\} .
$$

If $U_{\bullet}=\{U\}$ is a singleton, then the trace of U in M and the reject of U in M are in the form

$$
\operatorname{Tr}_{M}(U)=\sum\left\{\operatorname{Im}(h) \mid h \in \operatorname{Hom}_{R}(U, M)\right\}
$$

and

$$
\operatorname{Rej}_{M}(U)=\bigcap\left\{\operatorname{Ker}(h) \mid h \in \operatorname{Hom}_{R}(M, U)\right\}
$$

2.8.2 Proposition. Let $U \mathrm{U}$ be a class of right R-modules and let M be a right R-module.
(1) $\operatorname{Tr}_{M}\left(थ_{0}\right)$ is the unique largest submodule L of M generated by U;
(2) $\operatorname{Rej}_{M}\left(\ddots_{0}\right)$ is the unique smallest submodule K of M such that M / K is cogenerated by ℓ.

Proof. See [1, Proposition 8.12].

2.9 Socle and Radical of Modules

In this section, we give some definitions and theories of the socle and radical of modules which are used in this thesis.
2.9.1 Definition. [13] Let M be a right R-module. The socle of M, $\operatorname{Soc}(M)$, we denote the sum of all simple submodules of M. If there are no simple submodules in M we put $\operatorname{Soc}(M)=0$.
2.9.2 Definition. [13] Let M be a right R-module. The radical of $M, \operatorname{Rad}(M)$, we denote the intersection of all maximal submodules of M. If M has no maximal submodules we set $\operatorname{Rad}(M)=M$.
2.9.3 Proposition. Let \mathcal{E} be the class of simple R-modules and let M be an R-module. Then

$$
\begin{aligned}
\operatorname{Soc}(M) & =\operatorname{Tr}_{M}(\mathcal{E}) \\
& =\bigcap\{L \subset M \mid L \text { is essential in } M\} .
\end{aligned}
$$

Proof. See [13, 21.1].
2.9.4 Proposition. Let \mathcal{E} be the class of simple R-modules and let M be an R-module. Then

$$
\begin{aligned}
\operatorname{Rad}(M) & =\operatorname{Rej}_{M}(\mathcal{E}) \\
& =\sum\{L \subset M \mid L \text { is superfluous in } M\}
\end{aligned}
$$

Proof. See [13, 21.5].
2.9.5 Proposition. Let M be a right R-module. A right R-module M is finitely generated if and only if $\operatorname{Rad}(M) \ll M$ and $M / \operatorname{Rad}(M)$ is finitely generated.

Proof. See [13, 21.6, (4)].
2.9.6 Proposition. Let M be a right R-module. Then $\operatorname{Soc}(M) \subset^{e} M$ if and only if every non-zero submodule of M contains a minimal submodule.

Proof. See [1, Corollary 9.10].

2.10 The Radical of a Ring

In this section, we give some definitions and theories of the radical of a ring which are used in this thesis.
2.10.1 Definition. [1] Let R be a ring. The radical $\operatorname{Rad}\left(R_{R}\right)$ of R_{R} is an (two side) ideal of R. This ideal of R is called the (Jacobson) radical of R, and we usually abbreviated by

$$
J(R)=\operatorname{Rad}\left(R_{R}\right)
$$

Since $R=1 R$ is finite generated, $J(R) \ll R$. If $a \in J(R)$, then $a R \subset J(R) \ll R$ so $a R \ll R$. If $a R \ll R$, then $a R \subset J(R)$ and so $a \in a R \subset J(R)$. This shows that $a \in J(R)$ if and only if $a R \ll R$.
2.10.2 Definition. [1] Let R be a ring. An element $x \in R$ is called right (left) quasi-regular if $1-x$ has a right (resp. left) inverse in R.

An element $x \in R$ is called quasi-regular if it is right and left quasi-regular.
A subset of R is said to be (right, left) quasi-regular if every element in it has the corresponding property.
2.10.3 Proposition. Given a ring R for each of the following subsets of R is equal to the radical $J(R)$ of R.

$$
\begin{aligned}
& \left(J_{1}\right) \text { The intersection of all maximal right (left) ideals of } R \text {; } \\
& \left(J_{2}\right) \text { The intersection of all right (left) primitive ideals of } R \text {; }
\end{aligned}
$$

$\left(J_{3}\right)\{x \in R \mid r x s$ is quasi-regular for all $r, s \in R\}$;
$\left(J_{4}\right)\{x \in R \mid r x$ is quasi-regular for all $r \in R\}$;
$\left(J_{5}\right)\{x \in R \mid x s$ is quasi-regular for all $s \in R\}$;
$\left(J_{6}\right)$ The union of all the quasi-regular right (left) ideals of R;
$\left(J_{7}\right)$ The union of all the quasi-regular ideals of R;
$\left(J_{8}\right)$ The unique largest superfluous right (left) ideals of R;
Moreover, $\left(J_{3}\right),\left(J_{4}\right),\left(J_{5}\right),\left(J_{6}\right)$ and $\left(J_{7}\right)$ also describe the radical $J(R)$ if "quasi-regular" is replaced by "right quasi-regular" or by "left quasi-regular".

Proof. See [1, Theorem 15.3].
2.10.4 Proposition. Let R be a ring with radical $J(R)$. Then for every right R-module M,

$$
J(R) M_{R} \subset \operatorname{Rad}\left(M_{R}\right)
$$

If R is semisimple modulo its radical, then for every right R-module,

$$
J(R) M_{R}=\operatorname{Rad}\left(M_{R}\right)
$$

and $M / J(R) M_{R}$ is semisimple.
Proof. See [1, Corollary 15.18].

CHAPTER 3

RESEARCH RESULT

In this chapter, we present the results of M-small P-injective modules and quasi-small P-injective modules.

3.1 M-small P-injective Modules

3.1.1 Definition. Let M be a right R-module. A right R-module N is called M-small principally injective (briefly, M-small P-injective) if every R-homomorphism from M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N. Equivalently, for any endomorphism S of M with $s(M) \ll M$, every R-homomorphism from $s(M)$ to N can be extended to an R-homomorphism from M to N.
3.1.2 Lemma. Let M and N be right R-modules. Then N is M-small P-injective if and only iffor each $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$,

$$
\operatorname{Hom}_{R}(M, N) s=\left\{f \in \operatorname{Hom}_{R}(M, N): f(\operatorname{Ker}(s))=0\right\} .
$$

Proof. (\Rightarrow) Assume that N is M-small P-injective. Let $s \in S=E n d_{R}(M)$ and $s(M) \ll M$. To show that $\operatorname{Hom}_{R}(M, N) s=\left\{f \in \operatorname{Hom}_{R}(M, N): f(\operatorname{Ker}(s))=0\right\} .(\subset)$ Let $g s \in \operatorname{Hom}_{R}(M, N) s$. Since $s: M \rightarrow M$ and $g: M \rightarrow N, g s: M \rightarrow N$. Let $x \in \operatorname{Ker}(s)$. Then $g s(x)=g(s(x))=g(0)=0$. Hence $g s \in\left\{f \in \operatorname{Hom}_{R}(M, N): f(\operatorname{Ker}(s))=0\right\}$. This shows that $\operatorname{Hom}_{R}(M, N) s \subset\{f \in$ $\left.\operatorname{Hom}_{R}(M, N): f(\operatorname{Ker}(s))=0\right\} .(\supset)$ Let $f \in\left\{f \in \operatorname{Hom}_{R}(M, N): f(\operatorname{Ker}(s))=0\right\}$. Let $x \in \operatorname{Ker}(s)$. Since $f(\operatorname{Ker}(s))=0, f(x)=0$. Then $\operatorname{Ker}(s) \subset \operatorname{Ker}(f)$. By Proposition 2.1.16, there exists an R-homomorphism $\varphi: s(M) \rightarrow N$ such that $f=\varphi s$. Since $s(M) \ll M$, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow N$ such that $\varphi=\hat{\varphi} l$ where $l: s(M) \rightarrow M$ is the inclusion map.

Hence $f=\varphi s=(\hat{\varphi} l) s=\hat{\varphi} s \in \operatorname{Hom}_{R}(M, N) s$.
(\Leftarrow) Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$ and $\varphi: s(M) \rightarrow N$ be an R-homomorphism. Then $\varphi s \in \operatorname{Hom}_{R}(M, N)$. Let $x \in \operatorname{Ker}(s)$. Then $\varphi s(x)=\varphi(0)=0$. Therefore $\varphi s(\operatorname{Ker}(s))=0$. Then by assumption, $\varphi s \in \operatorname{Hom}_{R}(M, N) s$. Hence $\varphi s=\mu s$, for some $\mu \in \operatorname{Hom}_{R}(M, N)$. This shows that N is M-small P-injective.
3.1.3 Example. Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ where F is a field, $M_{R}=R_{R}$ and $N_{R}=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$. Then N is M-small P-injective.

Proof. We have only $X_{1}=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right), X_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & F\end{array}\right), X_{3}=\left(\begin{array}{ll}F & F \\ 0 & 0\end{array}\right), X_{4}=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right), X_{5}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, and $X_{6}=\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)$ are nonzero submodules of M, and we see that only $X_{1}=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ is only a small submodule of M because for every $X_{i} \subset M, 2 \leq i \leq 5, X_{i} \neq M$ then $X_{1}+X_{i} \neq M$. Now we show that X_{1} is an M-cyclic submodule of M. Define $s:\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right) \rightarrow\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ by $s\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ for every $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \in\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)$. To show that s is well-defined. Let $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right), \quad\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right) \in\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)$ such that $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)=\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)$. Then $S\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\right)=\left(\begin{array}{cc}0 & b_{1} \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{cc}0 & b_{2} \\ 0 & 0\end{array}\right)=S\left(\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)$. To show that S is an R-homomorphism. Let $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right),\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right) \in\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ and $\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right) \in R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$. Then $s\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right)+\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)=s\left(\left(\begin{array}{cc}a_{1} r_{1} & a_{1} r_{2}+b_{1} r_{3} \\ 0 & c_{1} r_{3}\end{array}\right)+\right.$ $\left.\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)=s\left(\left(\begin{array}{cc}a_{1} r_{1}+a_{2} & a_{1} r_{2}+b_{1} r_{3}+b_{2} \\ 0 & c_{1} r_{3}+c_{2}\end{array}\right)\right)=\left(\begin{array}{cc}0 & a_{1} r_{2}+b_{1} r_{3}+b_{2} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & a_{1} r_{2}+b_{1} r_{3} \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}0 & b_{2} \\ 0 & 0\end{array}\right)=$ $s\left(\left(\begin{array}{cc}a_{1} r_{1} & a_{1} r_{2}+b_{1} r_{3} \\ 0 & c_{1} r_{3}\end{array}\right)\right)+s\left(\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)=s\left(\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & c_{1}\end{array}\right)\left(\begin{array}{cc}\eta & r_{2} \\ 0 & r^{2}\end{array}\right)\right)+s\left(\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & c_{2}\end{array}\right)\right)$. We must show that s is an R-epimorphism. Let $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \in\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)=X_{1}$. Then there exists $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \in\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)$ such that $s\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$. Let $\varphi: X_{1} \rightarrow N$ be an R-homomorphism. Since $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in X_{1}$, there exists $x_{11}, x_{12} \in F$ such that $\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & 0\end{array}\right)$. Then $\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right)=$
$\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}0 & x_{12} \\ 0 & 0\end{array}\right)$. Then $\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & x_{12} \\ 0 & 0\end{array}\right)$ so $x_{11}=0$.
Define $\hat{\varphi}: M \rightarrow N$ by $\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)\right)=\left(\begin{array}{cc}x_{12} a_{11} & x_{12} a_{12} \\ 0 & 0\end{array}\right)$ for every $\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right) \in M$.
To show that $\hat{\varphi}$ is well-defined. Let $\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right),\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right) \in M$ such that $\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)=\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)$.
Then $\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)\right)=\left(\begin{array}{cc}x_{12} a_{11} & x_{12} a_{12} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x_{12} b_{11} & x_{12} b_{12} \\ 0 & 0\end{array}\right)=\hat{\varphi}\left(\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)\right)$. To show that $\hat{\varphi}$ is an R-homomorphism. Let $\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right), \quad\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right) \in\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right) \quad$ and $\quad\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right) \in R$. Then $\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right)+\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)\right)=\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} r_{1} & a_{11} r_{2}+a_{12} r_{3} \\ 0 & a_{22} r_{3}\end{array}\right)+\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)\right)=$ $\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} r_{1}+b_{11} & a_{11} r_{2}+a_{12} r_{3}+b_{12} \\ 0 & a_{22} r_{3}+b_{22}\end{array}\right)\right) \quad=\left(\begin{array}{cc}x_{12}\left(a_{11} r_{1}+b_{11}\right) & x_{12}\left(a_{22} r_{3}+b_{22}\right) \\ 0 & 0\end{array}\right) \quad=$ $\left(\begin{array}{cc}x_{12} a_{11} r_{1}+x_{12} b_{11} & x_{12} a_{22} r_{3}+x_{12} b_{22} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x_{12} a_{11} r_{1} & x_{12} a_{22} r_{3} \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}x_{12} b_{11} & x_{12} b_{22} \\ 0 & 0\end{array}\right)=$ $\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} r_{1} & a_{11} r_{2}+a_{12} r_{3} \\ 0 & a_{22} r_{3}\end{array}\right)\right)+\hat{\varphi}\left(\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)\right)=\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right)\right)+\hat{\varphi}\left(\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)\right)=$ $\hat{\varphi}\left(\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)\right)\left(\begin{array}{ll}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right)+\hat{\varphi}\left(\left(\begin{array}{cc}b_{11} & b_{12} \\ 0 & b_{22}\end{array}\right)\right)$. To show that $\hat{\varphi} l=\varphi$. Let $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \in X_{1}$. Then $\hat{\varphi} l\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\hat{\varphi}\left(l\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\hat{\varphi}\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & x_{12} x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x_{11} & x_{12} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right)=$ $\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right)=\varphi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)$. This shows that $\hat{\varphi}$ is an extension of φ. Thus N is M-small P-injective.
3.1.4 Proposition. Let M be a right R-modules and $\left\{N_{i}, i \in I\right\}$ be a family of right R-modules. Then the direct product $\prod_{i \in I} N_{i}$ is M-small P-injective if and only if each N_{i} is M-small P-injective.

Proof. ($\Rightarrow)$ Let $\left\{N_{i}, i \in I\right\}$ be a family of right R-modules and the direct product $\prod_{i \in I} N_{i}$ is M-small P-injective. Let $i \in I$, we must show that N_{i} is M-small P-injective. Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$ and let $\varphi: s(M) \rightarrow N_{i}$ be an R-homomorphism.

Let π_{i} and φ_{i}, for each $i \in I$, be the i-th projection map and the i-th injection map, respectively.

Since $\prod_{i \in I} N_{i}$ is M-small P-injective, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow \prod_{i \in I} N_{i}$ such that $\hat{\varphi} l=\varphi_{i} \varphi$ where $l: s(M) \rightarrow M$ is the inclusion map. Thus $\pi_{i} \hat{\varphi} l=\pi_{i} \varphi_{i} \varphi$, so by Definition 2.6.2, $\pi_{i} \hat{\varphi} l=\varphi$. Thus $\pi_{i} \hat{\varphi}$ is an extension of φ.
(\Leftarrow) Let N_{i} be M-small P-injective for each $i \in I$. To show that $\prod_{i \in I} N_{i}$ is M-small P-injective. Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$ and let $\varphi: s(M) \rightarrow \prod_{i \in I} N_{i}$ be an R-homomorphism. Let π_{i} be the i-th projection map. Since, for each i, N_{i} is M-small P-injective, there exists an R-homomorphism $\quad \alpha_{i}: M \rightarrow N_{i}$ such that $\pi_{i} \varphi=\alpha_{i} l$ where $l: s(M) \rightarrow M$ is the inclusion map. Then by Definition 2.6.5 and Proposition 2.6.6, we obtain $\hat{\varphi}: M \rightarrow \prod_{i \in I} N_{i}$ such that $\pi_{i} \hat{\varphi}=\alpha_{i}$ for each $i \in I$. Then $\pi_{i} \hat{\varphi} l=\alpha_{i} l$, so $\pi_{i} \varphi=\alpha_{i} l=\pi_{i} \hat{\varphi} l$. Hence $\pi_{i} \varphi=\pi_{i} \hat{\varphi} l$ for each $i \in I$. Therefore $\varphi=\hat{\varphi} l$.
3.1.5 Lemma. Let M and $N_{i}(1 \leq i \leq n)$ be right R-modules. Then $\bigoplus_{i=1}^{n} N_{i}$ is M-small P-injective if and only if N_{i} is M-small P-injective for each $i=1,2,3, \ldots, n$.

Proof. (\Rightarrow) Let $i \in\{1,2,3, \ldots, n\}$. To show that N_{i} is M-small P-injective. Let $S \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$ and let $\varphi: s(M) \rightarrow N_{i}$ be an R-homomorphism. Let π_{i} and φ_{i} be the i-th projection map and the i-th injection map, respectively. Since $\bigoplus_{i=1}^{n} N_{i}$ is M-small P-injective, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow \bigoplus_{i=1}^{n} N_{i}$ such that $\hat{\varphi} l=\varphi_{i} \varphi$ where $l: s(M) \rightarrow M$ is the inclusion map. Thus $\pi_{i} \hat{\varphi} l=\pi_{i} \varphi_{i} \varphi$, so by Definition 2.6.2, $\pi_{i} \hat{\varphi}_{l}=\varphi_{\text {. }}$. Thus $\pi_{i} \hat{\varphi}$ is an extension of φ.
(\Leftarrow) We must show that $\bigoplus_{i=1}^{n} N_{i}$ is M-small P-injective. Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$ and let $\alpha: s(M) \rightarrow \bigoplus_{i=1}^{n} N_{i}$ be an R-homomorphism. Since for each $i \in\{1,2,3, \ldots, n\}, N_{i}$ is M-small P-injective, there exists an R-homomorphism $\alpha_{i}: M \rightarrow N_{i}$ such that $\alpha_{i} l=\pi_{i} \alpha$ where π_{i} is the i-th projection map from $\bigoplus_{i=1}^{n} N_{i}$ to N_{i} and $l: s(M) \rightarrow M$ is the inclusion map. Set $\hat{\alpha}=l_{1} \alpha_{1}+l_{2} \alpha_{2}+\ldots+l_{n} \alpha_{n}: M \rightarrow \underset{i=1}{\oplus} N_{i}$ where $l_{i}: N_{i} \rightarrow \underset{i=1}{\oplus} N_{i}$
for each $i \in\{1,2,3, \ldots, n\}$ is the i-injection map. We must to show that $\hat{\alpha}$ is an extension of α. Let $s(m) \in s(M)$. Then $\hat{\alpha} l(s(m))=\hat{\alpha}(s(m))=l_{1} \alpha_{1}(s(m))+l_{2} \alpha_{2}(s(m))+\ldots+l_{n} \alpha_{n}(s(m))=$ $\alpha_{1}(s(m))+\alpha_{2}(s(m))+\ldots+\alpha_{n}(s(m))=\alpha_{1} l_{1}(s(m))+\alpha_{2} l_{2}(s(m))+\ldots+\alpha_{n} l_{n}(s(m))=\pi_{1} \alpha(s(m))+$ $\pi_{2} \alpha(s(m))+\ldots+\pi_{n} \alpha(s(m))=\left(\pi_{1}+\pi_{2}+\ldots+\pi_{n}\right) \alpha(s(m))=\alpha(s(m))$. Then $\bigoplus_{i=1}^{n} N_{i}$ is M-small P-injective.
3.1.6 Lemma. Any direct summand of an M-small P-injective module is again M-small P-injective.

Proof. Let N be an M-small P-injective module and let A be a direct summand of N. To show that A is an M-small P-injective. Let $s \in S=\operatorname{End}_{R}(M)$ with $S(M) \ll M$ and let $\alpha: s(M) \rightarrow A$ be an R-homomorphism. Since N is M-small P-injective, there exists an R-homomorphism $\hat{\alpha}: M \rightarrow N$ such that $\varphi \alpha=\hat{\alpha} l$ where $l: s(M) \rightarrow M$ is the inclusion map and $\varphi: A \rightarrow N$ is the injection map. Let $\pi: N \rightarrow A$ be the projection map. Then $\pi \varphi \alpha=\pi \hat{\alpha} l$. Hence by Definition 2.6.2, $\alpha=\pi \hat{\alpha} l$. Then $\pi \hat{\alpha}$ is an extension of α.
3.1.7 Theorem. The following conditions are equivalent for a projective module M.
(1) Every M-cyclic small submodule of M is projective.
(2) Every factor module of an M-small P-injective module is M-small P-injective.
(3) Every factor module of an injective R-module is M-small P-injective.

Proof. (1) \Rightarrow (2) Let N be an M-small P-injective module, X a submodule of N. To show that N / X is an M-small P-injective. Let $S \in S=\operatorname{End}_{R}(M)$ with $S(M) \ll M$ and let $\alpha: s(M) \rightarrow N / X$ be an R-homomorphism. Since $s(M)$ is projective, there exists an R-homomorphism $\varphi: s(M) \rightarrow N$ such that $\alpha=\eta \varphi$ where $\eta: N \rightarrow N / X$ is the natural R-epimorphism. Since N is M-small P-injective, there exists an R-homomorphism $\beta: M \rightarrow N$ such that $\varphi=\beta l$ where $l: s(M) \rightarrow M$ is the inclusion map. Then $\alpha=\eta \varphi=\eta \beta l$. Hence $\alpha=\eta \beta$. Therefore $\eta \beta$ is an extension of α. Thus N / X is an M-small P-injective.
(2) \Rightarrow (3) Let N be an injective R-module and X be a submodule of N. It is clear that an injective R-module is an M-small P-injective module, so N is M-small P-injective. Then by (2), N / X is an M-small P-injective.
(3) \Rightarrow (1) Let $s(M) \ll M, \gamma: A \rightarrow B$ be an R-epimorphism and let $\varphi: s(M) \rightarrow B$ be an R-homomorphism. Let E be an injective R-module and embed A in E by Proposition 2.5.4. Since γ is an R-epimorphism, by Proposition 2.4.4, there exists an R-isomorphism $\sigma: A / \operatorname{Ker}(\gamma) \rightarrow B$ such that $\gamma=\sigma \eta_{1}$ where $\eta_{1}: A \rightarrow A / \operatorname{Ker}(\gamma)$ is the natural R-epimorphism. Then by Proposition 2.1.15, we have $\sigma^{-1}: B \rightarrow A / \operatorname{Ker}(\gamma)$ is an R-isomorphism, so $B \cong A / \operatorname{Ker}(\gamma)$ and $A / \operatorname{Ker}(\gamma)$ is a submodule of $E / \operatorname{Ker}(\gamma)$. By assumption, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow E / \operatorname{Ker}(\gamma)$ such that $l_{1} \sigma^{-1} \varphi=\hat{\varphi} l_{2}$ where $l_{1}: A / \operatorname{Ker}(\gamma) \rightarrow E / \operatorname{Ker}(\gamma)$ and $l_{2}: s(M) \rightarrow M$ are the inclusion maps. Since M is projective, there exists an R-homomorphism $\beta: M \rightarrow E$ such that $\hat{\varphi}=\eta_{2} \beta$ where $\quad \eta_{2}: E \rightarrow E / \operatorname{Ker}(\gamma)$ is the natural R-epimorphism. Then $\hat{\varphi} l_{2}=\eta_{2} \beta l_{2}$. Hence $l_{1} \sigma^{-1} \varphi=\hat{\varphi} l_{2}=\eta_{2} \beta l_{2}$. It follows that $l_{1} \sigma^{-1} \varphi=\eta_{2} \beta l_{2}$. To show that $\beta(s(M)) \subset A$. Let $s(m) \in s(M)$. Then $l_{1} \sigma^{-1} \varphi(s(m))=\eta_{2} \beta l_{2}(s(m))=\eta_{2} \beta(s(m))=$ $\eta_{2}(\beta(s(m)))=\beta(s(m))+\operatorname{Ker}(\gamma)$. Hence $l_{1} \sigma^{-1} \varphi(s(m))=\sigma^{-1} \varphi(s(m))=a+\operatorname{Ker}(\gamma)$ for some $a \in A$, so $\beta(s(m))+\operatorname{Ker}(\gamma)=a+\operatorname{Ker}(\gamma)$. Thus $\beta(s(m))-a \in \operatorname{Ker}(\gamma)$. It follows that $\beta(s(m))=(\beta(s(m))-a)+a \in \operatorname{Ker}(\gamma)+A=A$. To show that $\varphi=\gamma \beta$. Let $s(m) \in s(M)$. Then $l_{1} \sigma^{-1} \varphi(s(m))=\sigma^{-1} \varphi(s(m))=\eta_{2} \beta l_{2}(s(m))=\eta_{2} \beta(s(m))$. Hence $l_{1} \sigma^{-1} \varphi(s(m))=\eta_{2} \beta(s(m))=\beta(s(m))+\operatorname{Ker}(\gamma)$, so $l_{1} \sigma^{-1} \varphi(s(m))=\beta(s(m))+\operatorname{Ker}(\gamma)$. Since γ is an R-epimorphism, $\varphi(s(m))=\gamma(a)$ for some $a \in A$. Thus $l_{1} \sigma^{-1} \varphi(s(m))=$ $l_{1} \sigma^{-1} \gamma(a)=\sigma^{-1} \gamma(a)=\eta_{1}(a)=a+\operatorname{Ker}(\gamma)$. It follows that $\beta(s(m))+\operatorname{Ker}(\gamma)=$ $a+\operatorname{Ker}(\gamma)$. Then $\beta(s(m))-a \in \operatorname{Ker}(\gamma)$. Hence $\gamma(\beta(s(m))-a)=0$, so $\gamma \beta(s(m))=\gamma(a)=$ $\varphi(s(m))$. Thus $\gamma \beta(s(m))=\varphi(s(m))$. This shows that β lifts φ.

3.2 Quasi-small P-injective Modules

A right R-module M is called quasi-small P-injective if it is M-small P-injective. In this section, we present the results of characterizations and properties of the endomorphism ring of quasi-small P-injective modules.
3.2.1 Lemma. Let M be a right R-module and $S=\operatorname{End}_{R}(M)$. Then the following conditions are equivalent :
(1) M is quasi-small P-injective.
(2) $l_{S}(\operatorname{Ker}(s))=S s$ for all $s \in S$ with $s(M) \ll M$.
(3) $\operatorname{Ker}(s) \subset \operatorname{Ker}(t)$, where $s, t \in S$ with $s(M) \ll M$, implies $S t \subset S s$.
(4) $l_{S}(\operatorname{Ker}(s) \cap \operatorname{Im}(t))=l_{S}(\operatorname{Im}(\mathrm{t}))+S$ for all $s, t \in S$ with $s(M) \ll M$.

Proof. (1) $\Rightarrow(2)$ Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$. ($\left.\supset\right)$ Let $f s \in S s$. To show that $f_{s} \in l_{S}(\operatorname{Ker}(s))$. Let $x \in \operatorname{Ker}(s)$. Then $s(x)=0, f_{s}(x)=f(s(x))=f(0)=0$. (\subset) Let $f \in l_{S}(\operatorname{Ker}(s))$. To show that $f \in S s$. Let $x \in \operatorname{Ker}(s)$. Since $f(\operatorname{Ker}(s))=0$, $f(x)=0$. Then $x \in \operatorname{Ker}(f)$. This shows that $\operatorname{Ker}(s) \subset \operatorname{Ker}(f)$. Since $s: M \rightarrow s(M)$ is an R-epimorphism, by Proposition 2.1.16, there exists an R-homomorphism $\varphi: s(M) \rightarrow M$ such that $f=\varphi s$. Since $s(M) \ll M$ and M is quasi-small P-injective, there exists an R-homomorphism $\hat{\varphi}: M \rightarrow M$ such that $\varphi=\hat{\varphi} l$ where $l: s(M) \rightarrow M$ is the inclusion map. Hence $f=\varphi s=(\hat{\varphi} \imath) s=\hat{\varphi} s \in S s$. This shows that $f \in S S$.
(2) \Rightarrow (1) To show that M is quasi-small P-injective. Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$ and let $\varphi: s(M) \rightarrow M$ be an R-homomorphism. Then $\varphi s \in S$. To show that $\varphi s \in l_{S}(\operatorname{Ker}(s))$. Let $x \in \operatorname{Ker}(s)$. Then $s(x)=0$ so $\varphi s(x)=\varphi(s(x))=\varphi(0)=0$. This shows that $\varphi s \in l_{S}(\operatorname{Ker}(s))$. Then by assumption, we have $\varphi s \in S s$. Hence $\varphi s=\hat{\varphi} s$ for some $\hat{\varphi} \in S$. To show that $\hat{\varphi} l=\varphi$. Let $s(m) \in s(M)$. Then $\hat{\varphi} l(s(m))=\hat{\varphi}(l(s(m)))=$ $\hat{\varphi}(s(m))=\hat{\varphi} s(m)=\varphi s(m)=\varphi(s(m))$. Then M is quasi-small P-injective.
(2) \Rightarrow (3) Let $s, t \in S$ with $s(M) \ll M$ and $\operatorname{Ker}(s) \subset \operatorname{Ker}(t)$. First we show that $l_{S}(\operatorname{Ker}(t)) \subset l_{S}(\operatorname{Ker}(s))$. Let $g \in l_{S}(\operatorname{Ker}(t))$. Then $g(x)=0$ for every $x \in \operatorname{Ker}(t)$. To show that $g \in l_{S}(\operatorname{Ker}(s))$, that is $g(x)=0$ for every $x \in \operatorname{Ker}(s)$. Let $x \in \operatorname{Ker}(s)$. Since $\operatorname{Ker}(s) \subset \operatorname{Ker}(t), x \in \operatorname{Ker}(t)$. Hence $g(x)=0$. Thus $g \in l_{S}(\operatorname{Ker}(s))$. We now show that $S t \subset l_{S}(\operatorname{Ker}(t))$. Let $s t \in S t$ and let $x \in \operatorname{Ker}(t)$. Then $t(x)=0, s t(x)=s(t(x))=s(0)=0$. Thus $s t \in l_{S}(\operatorname{Ker}(t))$. By (2), we have $S t \subset l_{S}(\operatorname{Ker}(t)) \subset l_{S}(\operatorname{Ker}(s))=S s$. Then $S t \subset S s$. (3) \Rightarrow (4) Let $s, t \in S$ with $s(M) \ll M$. To show that $l_{S}(\operatorname{Ker}(s) \cap \operatorname{Im}(t))=$ $l_{S}(\operatorname{Im}(t))+S s . \quad(\subset) \quad$ Let $\quad u \in l_{S}(\operatorname{Ker}(s) \cap \operatorname{Im}(t)) . \quad$ Then $\quad u(\operatorname{Ker}(s) \cap \operatorname{Im}(t))=0$. To show that $\operatorname{Ker}(s t) \subset \operatorname{Ker}(u t)$. Let $x \in \operatorname{Ker}(s t)$. Then $s t(x)=0$, so that $t(x) \in \operatorname{Ker}(s)$. We have $t(x) \in \operatorname{Im}(t)$, hence $t(x) \in(\operatorname{Ker}(s) \cap \operatorname{Im}(t))$, so $u t(x)=0$. Then $x \in \operatorname{Ker}(u t)$. Since $\quad s t(M) \subset s(M), s t(M) \ll M$ by Proposition 2.2.3. Since $\operatorname{Ker}(s t) \subset \operatorname{Ker}(u t)$ and $s t(M) \ll M$, Sut $\subset S s t$ by (3). Since $u t=1 u t \in S u t \subset S s t, u t \in S s t$. Write $u t=v s t$ for some $v \in S$. Then $u t-v s t=0$, so $(u-v s) t=0$. Thus $(u-v s) t(x)=0$ for all $x \in M$. Therefore $u-v s \in l_{S}(\operatorname{Im}(t))$. It follows that $u=u-v s+v s \in l_{S}(\operatorname{Im}(t))+S s$. (つ) Let $u \in l_{S}(\operatorname{Im}(t))+S s$. To show that $u \in l_{S}(\operatorname{Ker}(s) \cap \operatorname{Im}(t))$. That is $u(\operatorname{Ker}(s) \cap \operatorname{Im}(t))=0$, i.e., $u x=0$ for every $x \in(\operatorname{Ker}(s) \cap \operatorname{Im}(t))$. Let $x \in \operatorname{Ker}(s)$ and $x=t(m)$ for some $m \in M$. Since $u \in l_{S}(\operatorname{Im}(t))+S s, u=v+\varphi S$ for some $v \in l_{S}(\operatorname{Im}(t))$ and $\varphi \in S$. Thus $u(x)=v(x)+\varphi s(x)=v(t(m))+\varphi(0)=0+0=0$.
(4) \Rightarrow (2) Let $s \in S=\operatorname{End}_{R}(M)$ with $s(M) \ll M$. We have $1_{M} \in S$. Then by (4) we have $l_{S}(\operatorname{Ker}(s) \cap 1(M))=l_{S}(1(M))+S s$. Then $l_{S}(\operatorname{Ker}(s))=S s$.

Let R be a Ring. A right R-module M is called small principally injective (briefly, $S P$-injective) [12] if, every R-homomorphism from a small and principal right ideal of R to M can be extended to an R-homomorphism from R to M. If R_{R} is an $S P$-injective, then we call R is a right $S P$-injective ring.
3.2.2 Corollary. The following conditions are equivalent for a Ring R :
(1) R is $S P$-injective.
(2) $\operatorname{lr}(a)=R a$ for all $a \in J(R)$.
(3) $r(a) \subset r(b)$, where $a \in J(R), b \in R$ implies $R b \subset R a$.
(4) $l(r(a) \cap b R)=l(b)+R a$ for all $a \in J(R), b \in R$.
3.2.3 Proposition. Let M be a principal module which is a self generator and let $s=\operatorname{End}(M)$. If M is quasi-small P-injective, then S is a right $S P$-injective ring.

Proof. To show that S is a right $S P$-injective ring. Let $s \in J(S)$ and let $\varphi: s S \rightarrow S$ be an S-homomorphism. Since M is a self generator, $\operatorname{Ker}(s)=\sum_{\mathrm{t} \in \mathrm{I}} t(M)$ for some $I \subset S$. Since $s=s \cdot 1 \in s S, \varphi(s)=g$ for some $g \in S$. For any $t \in I$, we have $\varphi(s) t=g t$. Since $\varphi(s) t=\varphi(s t)=\varphi(0)=0, \quad g t=0 . \quad$ Since $\quad g t=0, \quad g t(M)=0 \quad$ so $\quad \operatorname{Im}(t) \subset \operatorname{Ker}(g)$. It follows that $\operatorname{Ker}(s) \subset \operatorname{Ker}(g)$. Then by Theorem 2.1.16, there exists an R-homomorphism $\alpha: s(M) \rightarrow M$ such that $\alpha S=g$. Since M is a principal module, by Proposition 2.9.5, $J(M) \ll M$. By Proposition 2.10.4, we have $J(S) M \subset J(M)$. By Proposition 2.2.3, $J(S) M \ll M$. Since $s \in J(S), s(M) \ll M$. Since M is quasi-small P-injective, there exists an R-homomorphism $\hat{\alpha}: M \rightarrow M$ such that $\alpha=\hat{\alpha} l$ where $l: s(M) \rightarrow M$ is the inclusion map. Hence $\hat{\alpha} l s=\alpha s=g$. Define $\hat{\varphi}: S \rightarrow S$ by $\hat{\varphi}(f)=\hat{\alpha} f$ for every $f \in S$. Let $f_{1}, f_{2} \in S$ such that $f_{1}=f_{2}$. Then $\hat{\varphi}\left(f_{1}\right)=\hat{\alpha} f_{1}=\hat{\alpha} f_{2}=\hat{\varphi}\left(f_{2}\right)$. This shows that $\hat{\varphi}$ is well-defined. Let $f_{1}, f_{2} \in S$ and $s \in S$. Then $\hat{\varphi}\left(f_{1} s+f_{2}\right)=\hat{\alpha}\left(f_{1} s+f_{2}\right)=\hat{\alpha}\left(f_{1} s\right)+\hat{\alpha}\left(f_{2}\right)=\hat{\alpha}\left(f_{1}\right) s+\hat{\alpha}\left(f_{2}\right)=\hat{\varphi}\left(f_{1} s\right)+\left(f_{2}\right)$. This shows that $\hat{\varphi}$ is an S-homomorphism. To show that $\varphi=\hat{\varphi} l$. Let $s a \in s S$. Then $\hat{\varphi} l(s a)=\hat{\varphi}(s a)=\hat{\alpha}(s a)=\alpha(s a)=(\alpha s)(a)=g(a)=(\varphi(s))(a)=\varphi(s a)$. This shows that $\hat{\varphi}$ is an extension of φ.
3.2.4 Proposition. Let M be a principal module which is a self generator. If M is quasi-small P-injective ,then
(1) If $s S \oplus t S$ and $S s \oplus S t$ are both direct, $s, t \in J(S)$, then $l(s)+l(t)=S$.
(2) $\operatorname{lr}(S s)=S s$ for any $s \in J(S)$.

Proof. (1) Define $\varphi:(s+t) S \rightarrow S$ by $\varphi(s+t) u=t u$ for every $u \in S$. If $(s+t) u=0$, then $s u=-t u \in s S \cap t S=0$. Then $t u=0$. Hence $\varphi(s+t) u=t u=0$. This shows that φ is well-defined. Let $(s+t) u_{1},(s+t) u_{2} \in(s+t) S, v \in S$. Then $\varphi\left((s+t) u_{1} v+(s+t) u_{2}\right)=$ $\varphi\left((s+t)\left(u_{1} v+u_{2}\right)\right)=t\left(u_{1} v+u_{2}\right)=t u_{1} v+t u_{2}=\varphi\left((s+t) u_{1}\right) v+\varphi((s+t)) u_{2}$. This shows that φ is an S-homomorphism. Since by Proposition 3.2.3, S is right $S P$-injective, there exists an S-homomorphism $\hat{\varphi}: S \rightarrow S$ such that $\varphi=\hat{\varphi} l$ where $l:(s+t) S \rightarrow S$ is the inclusion map. Hence $\hat{\varphi}(1)(s+t)=\hat{\varphi}(s+t)=\varphi(s+t)=t$, so $\hat{\varphi}(1)(s+t)=t$. Then $\quad \hat{\varphi}(1)(s)+\hat{\varphi}(1) t=t \quad$ and \quad so $\hat{\varphi}(1)(s)=t-\hat{\varphi}(1) t=(1-\hat{\varphi}(1)) t \in S s \cap S t=0$. Then $\hat{\varphi}(1)(s)=0$ and $(1-\hat{\varphi}(1)) t=0$. Hence $\hat{\varphi}(1) \in l(s)$ and $(1-\hat{\varphi}(1)) \in l(t)$. Thus $1=\hat{\varphi}(1)+(1-\hat{\varphi}(1)) \in l(s)+l(t)$. Then $1 \in l(s)+l(t)$ so $l(s)+l(t)=S$.
(2) ($\supset)$ Let $f_{S} \in S S$. To show that $f_{S} \in l_{S} r_{S}(S S)$. That is $f s(r(S s))=0$, i.e., $f s(x)=0$ for every $x \in r(S s)$. Let $x \in r(S S)$. Since $f s \in S s, f s(x)=0$. ($\subset)$ Let $t \in \operatorname{lr}(S s)$. To show that $t \in S S$. Define $\varphi: s S \rightarrow t S$ by $\varphi(s u)=t u$ for every $u \in S$. Let $0=s u \in S S$. To show that $t u=0$. That is to show that $t u(x)=0$ for every $x \in M$. Let $x \in M$. Then $s u(x)=0$ so $t u(x)=0$. This shows that φ is well-defined. Let $s u_{1}, s u_{2} \in s S$ and $v \in S$. Then $\varphi\left(s u_{1} v+s u_{2}\right)=\varphi\left(s\left(u_{1} v+u_{2}\right)\right)=t\left(u_{1} v+u_{2}\right)=$ $t u_{1} v+t u_{2}=\varphi\left(s u_{1}\right) v+\varphi\left(s u_{2}\right)$. This shows that φ is an S-homomorphism. Since by Proposition 3.2.3, S is right $S P$-injective, there exists an S-homomorphism $\hat{\varphi}: S \rightarrow S$ such that $l_{2} \varphi=\hat{\varphi} l_{1}$ where $l_{1}: s S \rightarrow S$ and $l_{2}: t S \rightarrow S$ are the inclusion maps. We have $1 \in S$. Then $t=t \cdot 1=\varphi(s \cdot 1)=\varphi(s)=\hat{\varphi}(s)=\hat{\varphi}(1) s \in S s$. This shows that $\operatorname{lr}(S s) \subset S s$.
3.2.5 Proposition. Let M be a quasi-small P-injective module and $s_{i} \in S$ with $s_{i}(M) \ll M,(1 \leq i \leq n)$.
(1) If $S s_{1} \oplus \ldots \oplus S s_{n}$ is direct, then any R-homomorphism $\alpha: s_{1}(M)+\ldots+$ $s_{n}(M) \rightarrow M$ has an extension in S.
(2) If $s_{1}(M) \oplus \ldots \oplus s_{n}(M)$ is direct, then $S\left(s_{1}+\ldots+s_{n}\right)=S s_{1}+\ldots+S s_{n}$.

Proof. (1) Let $S s_{1} \oplus \ldots \oplus S s_{n}$ is direct and let $\alpha: s_{1}(M)+\ldots+s_{n}(M) \rightarrow M$ be an R-homomorphism. Since M is quasi-small P-injective, for each $i, 1 \leq i \leq n$, there exists an R-homomorphism $\varphi_{i}: M \rightarrow M$ such that $\alpha s_{i}(m)=\varphi_{i} S_{i}(m)$ for every $m \in M$. Since $s_{i}(M) \ll M$ for each $i=1,2, \ldots, n, \sum_{i=1}^{n} s_{i}(M) \ll M$ by Proposition 2.2.3(2), and we have $\left(\sum_{i=1}^{n} s_{i}\right)(M) \subset \sum_{i=1}^{n} s_{i}(M)$ which implies $\left(\sum_{i=1}^{n} s_{i}\right)(M) \ll M$ by Proposition 2.2.3(1). Since M is quasi-small P-injective, there exists an R-homomorphism $\varphi: M \rightarrow M$ such that, for any $m \in M, \varphi\left(\sum_{i=1}^{n} s_{i}\right)(m)=\alpha\left(\sum_{i=1}^{n} s_{i}\right)(m)$. To show that $\sum_{i=1}^{n} \varphi s_{i}=\sum_{i=1}^{n} \varphi_{i} s_{i}$. Let $m \in M$. Then $\sum_{i=1}^{n} \varphi_{i} s_{i}(m)=\varphi_{1} s_{1}(m)+\varphi_{2} s_{2}(m)+\ldots+\varphi_{n} s_{n}(m)=\alpha s_{1}(m)+\alpha s_{2}(m)+\ldots+$ $\alpha s_{n}(m)=\left(\alpha s_{1}+\alpha s_{2}+\ldots+\alpha s_{n}\right)(m)=\alpha\left(s_{1}+s_{2}+\ldots+s_{n}\right)(m)=\alpha\left(\sum_{i=1}^{n} s_{i}\right)(m)=\varphi\left(\sum_{i=1}^{n} s_{i}\right)(m)=$ $\varphi\left(s_{1}+s_{2}+\ldots+s_{n}\right)(m)=\left(\varphi s_{1}+\varphi s_{2}+\ldots+\varphi s_{n}\right)(m)=\varphi s_{1}(m)+\varphi s_{2}(m)+\ldots+\varphi s_{n}(m)=\sum_{i=1}^{n} \varphi s_{i}(m)$. This shows that $\sum_{i=1}^{n} \varphi s_{i}=\sum_{i=1}^{n} \varphi_{i} s_{i}$. Then $\left(\varphi_{1} s_{1}-\varphi s_{1}\right)+\left(\varphi_{2} s_{2}-\varphi s_{2}\right)+\ldots+\left(\varphi_{n} s_{n}-\varphi s_{n}\right)=0$. Thus $\left(\varphi_{1}-\varphi\right) s_{1}+\left(\varphi_{2}-\varphi\right) s_{2}+\ldots+\left(\varphi_{n}-\varphi\right) s_{n}=0$. Since $S s_{1} \oplus S s_{2} \oplus \ldots \oplus S s_{n}$ is direct, $\left(\varphi_{1}-\varphi\right)=\left(\varphi_{2}-\varphi\right)=\left(\varphi_{n}-\varphi\right)=0$. Then by Proposition 2.6.8, $\left(\varphi_{1}-\varphi\right) s_{1}=\left(\varphi_{2}-\varphi\right) s_{2}=\ldots=$ $\left(\varphi_{n}-\varphi\right) s_{n}=0$. Hence $\left(\varphi_{i}-\varphi\right) s_{i}=0$, for all $1 \leq i \leq n$. Thus $\varphi_{i} s_{i}=\varphi s_{i}$, for all $1 \leq i \leq n$. To show that $\alpha=\varphi l$. Let $s_{1}\left(x_{1}\right)+s_{2}\left(x_{2}\right)+\ldots+s_{n}\left(x_{n}\right) \in s_{1}(M)+s_{2}(M)+\ldots+s_{n}(M)$. Then $\alpha\left(s_{1}\left(x_{1}\right)+s_{2}\left(x_{2}\right)+\ldots+s_{n}\left(x_{n}\right)\right)=\alpha s_{1}\left(x_{1}\right)+\alpha s_{2}\left(x_{2}\right)+\ldots+\alpha s_{n}\left(x_{n}\right)=\varphi_{1} s_{1}\left(x_{1}\right)+$ $\varphi_{2} s_{2}\left(x_{2}\right)+\ldots+\varphi_{n} s_{n}\left(x_{n}\right)=\varphi s_{1}\left(x_{1}\right)+\varphi s_{2}\left(x_{2}\right)+\ldots+\varphi s_{n}\left(x_{n}\right)=\varphi\left(s_{1}\left(x_{1}\right)+s_{2}\left(x_{2}\right)+\ldots+\right.$
$\left.s_{n}\left(x_{n}\right)\right)=\varphi l\left(s_{1}\left(x_{1}\right)+s_{2}\left(x_{2}\right)+\ldots+s_{n}\left(x_{n}\right)\right)$. Hence $\alpha\left(s_{1}\left(x_{1}\right)+s_{2}\left(x_{2}\right)+\ldots+s_{n}\left(x_{n}\right)\right)=$ $\varphi l\left(s_{1}\left(x_{1}\right)+s_{2}\left(x_{2}\right)+\ldots+s_{n}\left(x_{n}\right)\right)$. This shows that φ is an extension of α.
(2) ($\supset)$ Let $\alpha_{1} s_{1}+\alpha_{2} s_{2}+\ldots+\alpha_{n} s_{n} \in S s_{1}+S s_{2}+\ldots+S s_{n}$. To show that $\alpha_{1} s_{1}+\alpha_{2} s_{2}+\ldots+\alpha_{n} s_{n} \in S\left(s_{1}+s_{2}+\ldots+s_{n}\right)$. For each i, define $\varphi_{i}:\left(s_{1}+s_{2}+\ldots+s_{n}\right)(M) \rightarrow M$ by $\varphi_{i}\left(\left(s_{1}+s_{2}+\ldots+s_{n}\right)(m)\right)=s_{i}(m)$ for every $m \in M$. Let $0=\left(s_{1}+s_{2}+\ldots+s_{n}\right)(m) \in$ $\left(s_{1}+s_{2}+\ldots+s_{n}\right)(M)$. Then $s_{1}(m)+s_{2}(m)+\ldots+s_{n}(m)=\left(s_{1}+s_{2}+\ldots+s_{n}\right)(m)=0$. Since $s_{1}(M) \oplus s_{2}(M) \oplus \ldots \oplus s_{n}(M)$ is direct, $s_{1}(m)=s_{2}(m)=\ldots=s_{n}(m)=0$ so $s_{i}(m)=0$. This shows that φ_{i} is well-defined. Let $\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{1}\right),\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{2}\right) \in$ $\left(s_{1}+s_{2}+\ldots+s_{n}\right)(M)$ and $r \in R$. Then $\varphi_{i}\left(\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{1}\right) r+\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{2}\right)\right)=$ $\varphi_{i}\left(\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{1} r+m_{2}\right)\right)=s_{i}\left(m_{1} r+m_{2}\right)=s_{i}\left(m_{1} r\right)+s_{i}\left(m_{2}\right)=s_{i}\left(m_{1}\right) r+s_{i}\left(m_{2}\right)=$ $\varphi_{i}\left(\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{1}\right)\right) r+\varphi_{i}\left(\left(s_{1}+s_{2}+\ldots+s_{n}\right)\left(m_{2}\right)\right)$. This shows that φ_{i} is an R-homomorphism. By the similar proof of (1) we have $\left(s_{1}+s_{2}+\ldots+s_{n}\right)(M) \ll M$. Since M is quasi-small P-injective, there exists an R-homomorphism $\hat{\varphi}_{i}: M \rightarrow M$ such that $\varphi_{i}=\hat{\varphi}_{i} l$ where $l:\left(s_{1}+s_{2}+\ldots+s_{n}\right)(M) \rightarrow M$ is the inclusion map. Then $s_{i}=\varphi_{i}\left(s_{1}+s_{2}+\ldots+s_{n}\right)=\hat{\varphi}_{i}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \in S\left(s_{1}+s_{2}+\ldots+s_{n}\right)$. Hence $\alpha_{i} s_{i}=\alpha_{i} \hat{\varphi}_{i}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \in S\left(s_{1}+s_{2}+\ldots+s_{n}\right)$ so $\alpha_{1} s_{1}+\alpha_{2} s_{2}+\ldots+\alpha_{n} s_{n}=$ $\alpha_{1} \hat{\varphi}_{1}\left(s_{1}+s_{2}+\ldots+s_{n}\right)+\alpha_{2} \hat{\varphi}_{2}\left(s_{1}+s_{2}+\ldots+s_{n}\right)+\ldots+\alpha_{n} \hat{\varphi}_{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right)=$ $\left(\alpha_{1} \hat{\varphi}_{1}+\alpha_{2} \hat{\varphi}_{2}+\ldots+\alpha_{n} \hat{\varphi}_{n}\right)\left(s_{1}+s_{2}+\ldots+s_{n}\right) \in S\left(s_{1}+s_{2}+\ldots+s_{n}\right) .(\subset)$ Let $\alpha\left(s_{1}+s_{2}+\ldots+s_{n}\right)$ $\in S\left(s_{1}+s_{2}+\ldots+s_{n}\right)$. Then $\alpha\left(s_{1}+s_{2}+\ldots+s_{n}\right)=\alpha s_{1}+\alpha s_{2}+\ldots+\alpha s_{n} \in S s_{1}+\ldots+S s_{n}$.
3.2.6 Proposition. Let M be a quasi-small P-injective module and $s_{1}(M) \oplus \ldots \oplus S_{n}(M)$ a direct sum of small and fully invariant M-cyclic submodules of M. Then for any fully invariant small submodule A of M, we have

$$
A \cap\left(s_{1}(M) \oplus \ldots \oplus s_{n}(M)\right)=\left(A \cap s_{1}(M)\right) \oplus \ldots \oplus\left(A \cap s_{n}(M)\right)
$$

Proof. (\supset) Since $A \cap s_{i}(M) \subset A \cap\left(s_{1}(M) \oplus \ldots \oplus s_{n}(M)\right)$ for each $i=1,2, \ldots, n$, we have $\left(A \cap s_{1}(M)\right) \oplus \ldots \oplus\left(A \cap s_{n}(M)\right) \subset A \cap\left(s_{1}(M) \oplus \ldots \oplus s_{n}(M)\right)$. $(\subset) \quad$ Let $a=\sum_{i=1}^{n} s_{i}\left(m_{i}\right) \in A \cap\left(s_{1}(M) \oplus \ldots \oplus \quad s_{n}(M)\right)$. To show that $\sum_{i=1}^{n} s_{i}\left(m_{i}\right) \quad \in\left(A \cap s_{1}(M)\right) \oplus \ldots \oplus\left(A \cap s_{n}(M)\right)$. Let $\pi_{k}: \quad \underset{i=1}{\oplus} s_{i}(M) \rightarrow s_{k}(M)$ be the projection map. Since for each $i,(1 \leq i \leq n), s_{i}(M)$ is small and fully invariant, by Proposition 2.1.17, $S s_{i}(M) \subset s_{i}(M)$. Thus $\underset{i=1}{\oplus} S s_{i}(M)$ is direct, so $\bigoplus_{i=1}^{n} S s_{i}$ is direct. By Proposition 3.2.5, π_{k} has an extension $\hat{\pi}_{k}: M \rightarrow s_{k}(M)$ such that $\pi_{k}=\hat{\pi}_{k} l$ where $l: s_{1}(M) \oplus s_{2}(M) \oplus \ldots \oplus s_{n}(M) \longrightarrow M$ is the inclusion map. Let $m_{i} \in M$. Then $s_{i}\left(m_{i}\right)=\pi_{i}\left(\sum_{i=1}^{n} s_{i}\left(m_{i}\right)\right)=\hat{\pi}_{i} l\left(\sum_{i=1}^{n} s_{i}\left(m_{i}\right)\right)=\hat{\pi}_{i}\left(\sum_{i=1}^{n} s_{i}\left(m_{i}\right)\right)=\hat{\pi}_{i}(a) \in A \cap s_{i}(M)$. Hence $\sum_{i=1}^{n} s_{i}\left(m_{i}\right)=s_{1}\left(m_{1}\right)+s_{2}\left(m_{2}\right)+\ldots+s_{n}\left(m_{n}\right) \in A \cap s_{1}(M) \oplus A \cap s_{2}(M) \oplus \ldots \oplus A \cap s_{n}(M)$.
3.2.7 Theorem. Let M be a quasi-small P-injective module, $s, t \in S$ and $s(M) \ll M$.
(1) If $s(M)$ embeds in $t(M)$, then $S s$ is an image of St.
(2) If $t(M)$ is an image of $S(M)$, then St embeds in Ss.
(3) If $s(M) \cong t(M)$, then $S s \cong S t$.

Proof. (1) Let $f: s(M) \rightarrow t(M)$ be an R-monomorphism. Since M is quasi-small P-injective, there exists an R-homomorphism $\hat{f}: M \rightarrow M$ such that $l_{2} f=\hat{f} l_{1}$ where $\quad l_{1}: s(M) \rightarrow M$ and $l_{2}: t(M) \rightarrow M$ are the inclusion maps. Define $\sigma: S t \rightarrow S s$ by $\sigma(u t)=u \hat{f} s$ for every $u \in S$. Let $0=u t \in S t$. To show that $\operatorname{Im}(\hat{f} s) \subset \operatorname{Im}(t)$. Let $\hat{f} s(m) \in \hat{f} s(M)$. Then $\hat{f} s(m)=f s(m) \in t(M)$. To show that $\sigma(u t)=0$, i.e., $u \hat{f} s(m)=0$ for every $m \in M$. Let $m \in M$. Then $u \hat{f} s(m)=u f s(m)=u t(y)$ for some $y \in M$. Hence $u \hat{f} s(m)=u t(y)=0$. This shows that σ is well-defined. To show that σ is a left S-homomorphism.

Let $u_{1}(t), u_{2}(t) \in S t$ and $v \in S$. Then $\sigma\left(v u_{1} t+u_{2} t\right)=\sigma\left(\left(v u_{1}+u_{2}\right) t\right)=$ $\left(v u_{1}+u_{2}\right) \hat{f} s=v u_{1} \hat{f} s+u_{2} \hat{f} s=v\left(u_{1} \hat{f} s\right)+u_{2} \hat{f} s=v \sigma\left(u_{1} t\right)+\sigma\left(u_{2} t\right)$.

To show that σ is an S-epimorphism. Let $k s \in S s$. To show that $\operatorname{Ker}(\hat{f} s) \subset \operatorname{Ker}(s)$. Let $x \in \operatorname{Ker}(\hat{f} s)$. Then $\hat{f} s(x)=0$, so $f s(x)=\hat{f} s(x)=0$. Since f is monic, $s(x)=0$. Then $x \in \operatorname{Ker}(s)$. Since $s(M) \ll M$ and $\hat{f}: M \rightarrow M$ is an R-homomorphism, $\hat{f} s(M) \ll M$ by Proposition 2.2.4. Since M is quasi-small P-injective, $S s \subset S \hat{f} S$ by Lemma 3.2.1. Then $s=1 \cdot s=u \hat{f} s$ for some $u \in S$. Hence there exists $k u t \in S t$ such that $k s=\sigma(k u t)$.
(2) Let $f: s(M) \rightarrow t(M)$ be an R-epimorphism. Since M is quasi-small P-injective, there exists an R-homomorphism $\quad \hat{f}: M \rightarrow M$ such that $l_{2} f=\hat{f} l_{1}$ where $l_{1}: s(M) \rightarrow M$ and $l_{2}: t(M) \rightarrow M$ are the inclusion maps. Define $\sigma: S t \rightarrow S s$ by $\sigma(u t)=u \hat{f} s$ for every $u \in S$. It is clear that σ is a left S-homomorphism. Let $u t \in \operatorname{Ker}(\sigma)$. Then $0=\sigma(u t)=u \hat{f} s=u f s$. To show that ut $=0$, i.e., $\operatorname{ut}(m)=0$, for all $m \in M$. Let $m \in M$. Since f is an R-epimorphism, $f(s(a))=t(m)$ for some $a \in M$. Then $u t(m)=u f(s(a))=0$.
(3) Follows from (1) and (2).

Lists of References

[1] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules," Graduate Texts in Math. No. 13 ,Springer-verlag, New York, 1992.
[2] V. Camillo, "Commutative Rings whose Principal Ideals are Annihilators," Portugal Math., Vol 46, 1989. pp 33-37.
[3] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, "Extending Modules," Pitman, London, 1994.
[4] A. Facchini, "Module Theory," Birkhauser Verlag, Basel, Boston, Berlin, 1998.
[5] T.Y. Lam, "A First Course in Noncommutative Rings," Graduate Texts in Mathematics Vol 131, Springer-Verlag, New York, 1991.
[6] S. H. Mohamed and B. J. Muller, "Continuous and Discrete Modules," London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.
[7] W. K. Nicholson and M. F. Yousif, "Principally Injective Rings," J. Algebra, Vol 174, 1995. pp 77-93.
[8] W. K. Nicholson and M. F. Yousif, "Mininjective Rings," J. Algebra, Vol 187, 1997. pp 548-578.
[9] W. K. Nicholson, J. K. Park and M. F. Yousif, "Principally Quasi-injective Modules," Comm. Algebra, 27:4(1999). pp 1683-1693.
[10] N. V. Sanh, K. P. Shum, S. Dhompongsa and S.Wongwai, "On Quasi-principally Injective Modules," Algebra Coll.6: 3, 1999. pp 269-276.
[11] L. Shen and J. Shen, "Small Injective Rings," arXiv: Math., RA/0505445 vol 1, 2005.
[12] L.V. Thuyet, and T.C.Quynh, "On Small Injective Rings, Simple-injective and QuasiFrobenius Rings," Acta Math. Univ. Comenianae, Vol 78(2), 2009. pp 161-172.
[13] R. Wisbauer, "Foundations of Module and Ring Theory," Gordon and Breach Science Publisher, 1991.
[14] P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul, "Basic Abstract Algebra," The Press Syndicate of the University of Cambridge, second edition, 1995.

Lists of References (Continued)

[15] B. Hartley and T. O. Hawkes, "Ring, Modules and Linear Algebra," University Press, Cambridge, 1983.
[16] S. Wongwai, "On the Endomorphism Ring of a Semi-injective Module," Acta Math.Univ. Comenianae, Vol 71, 2002. pp 27-33.
[17] S. Wongwai, "Almost Quasi-mininjective Modules," Chamjuri Journal of Mathematics, Vol 2, 2010, no. 1. pp 73-79.
[18] S. Wongwai, "Small Principally Quasi-injective Modules," Int. J. Contemp. Math. Sciences, Vol 6, 2011, no. 11. pp 527-534.
[19] S. Wongwai, "Quasi-small P-injective Modules," Journal of Science and Technology RMUTT, Vol 1, 2011. no. 1. pp 59-65.
[20] Friedrich Kasch and Adolf Mader, "Rings, Modules and the Total," Birkhauser Verlag, Basel, Switzerland, 2004.
[21] P. Yordsorn and S. Wongwai, "A note on quasi-small P-injective Modules," Proceeding of The 5th Conference on Fixed Point Theory an Applications, July 8-9, 2011, Lampang, Thailand. pp 117.

The 5th Conference on Fixed Point Theory an Applications at Lampang Rajabhat university

July 8-8, 2011

Appendix

Conference Proceeding
Paper Title "A note on quasi-small P-injective Modules"

The 5th Conference on Fixed Point Theory an Applications
At Lampang Rajabhat university
July 8-9, 2011

The $5^{\text {th }}$ Annual Conference on
 Fixed Point Theory an Applications

at Lampang Rajabhat University, Lampang, Thailand

$$
\text { July 8-9, } 2011
$$

Abstracts

In celebration of the $40^{\text {th }}$ anniversary of Lampang Rajabhat University

(vii)

Content

INVITED SPEAKERS HALL A 15
I1 RAY'S THEOREM FOR NONLINEAR MAPPINGS AND 16
EQUILIBRIUM PROBLEMS IN BANACH SPACESSATIT SAEJUNGI2 ALGORITHMS FOR A COMMON SOLUTION OF GENERALIZED 17MIXED EQUILIBRIUM PROBLEMS, FIXED POINT PROBLEMSANDVARIATIONAL INEQUALITIES
POOM KUMAM
I3 VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF 18
A FAMILY OF QUASI-NONEXPANSIVE MAPPINGS WITH WEAKLY
CONTRACTIVE MAPPINGS
JAMNIAN NANTADILOK
I4 REMARKS ON BRUCK'S THEOREM IN CAT(0) SPACES 19
BANCHA PANYANAK AND PIYANAN PASON
I5 COINCIDENCE POINTS AND FIXED POINT THEOREMS 20
FORMAPPINGS IN G-METRIC SPACES
anchalee kaewcharoen
I6 ITERATIVE PROCESS FOR A PAIR OF SINGLE VALUED AND 21
MULTI-VALUED MAPPINGS IN BANACH SPACES
ATTAPOL KAEWKHAO
I7 FIXED POINT THEOREMS FOR CONTRACTIVE MULTI-VALUED 22
MAPPINGS INDUCED BY GENERALIZED DISTANCES IN METRIC
SPACES
NARIN PETROT
PARALLEL SESSIONS HALL B-1 23
1B01 FIXED POINT THEOREMS BY WAYS OF ULTRA-ASYMPTOTIC 24
CENTERS
S.DHOMPONGSA AND N.NANAN
B02 COUPLE COINCIDENCE POINT THEOREMS FOR 25CONTRACTIONSWITHOUT COMMUTATIVE CONDITIONIN INTUITIONISTIC FUZZY NORMED SPACESWUTIPHOL SINTUNAVARAT, YEOL JE CHO AND POOM KUMAM
1 B03 COMMON FIXED POINT FOR ASYMPTOTICALLY 26NONEXPANSIVE SINGLEVALUED MAPPING AND SUZUKIGENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGNAKNIMIT AKKASRIWORN AND ATTAPOL KAEWKHAO1B04 FIXED POINT THEOREMS FOR GENERALIZED27
ASYMPTOTICPOINTWISE ρ-CONTRACTION MAPPINGINVOLVING ORBITS IN MODULAR FUNCTION SPACESCHIRASAK MONGKOLKEHA AND POOM KUMAM
1B05 AN EXTENSION OF KRASNOSEL'SKII'S FIXED POINT THE28
OREMFOR CONTINUOUS AND -NONLINEAR CONTRACTION
MAPPINGS
AREEAT ARUNCHAI, SOMYOT PLUBTIENG
1B06 COMMON FIXED POINTS FOR SOME GENERALIZED29
YCONVEX METRIC SPACES
BANCHA PANYANAK, WORAWUT LAOWANG
1B07 THE SYSTEM OF GENERALIZED VARIATIONAL 30INEQUALITYPROBLEMS WITH GENERALIZED
MONOTONICITYKAMONRAT SOMBUT, SOMYOT PLUBTIEAG1B08 A GENERAL ITERATIVE METHOD FOR GENERALIZED31EQUILIBRIUM PROBLEMS AND FIXED POINT
PROBLEMS INHILBERT SPACES
KIATTISAK RATTANASEEHA
1B09 COMMON FIXED POINTS FOR ASYMPTOTIC POINTWISE 32
NONEXPANSIVE MAPPINGS
BANCHA PANYANAK AND PIYANAN PASOM
1 B10 SYSTEM OF NONLINEAR SET-VALUED VARIATIONAL 33
INCLUSIONS INVOLVING A FINITE FAMILY OF
$H(\cdot, \cdot)$-ACCRETIVE OPERATORS IN BANACH SPACESPRAPAIRAT JUNLOUCHA, SOMYOT PLUBTIENG
1 B11 EXISTENCE AND ITERATIVE APPROXIMATION FOR 34
GENERALIZED EQUILIBRIUM PROBLEMS FOR A
COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS
IN BANACH SPACES
UTHAI KANRAKSA
1B12 CONE METRIC SPACE AND FIXED POINT OF MULTIVALUED 35
NONEXPENSIVE-TYPE MAPSFAYYAZ ROUZKARD AND M.IMDAD (INDIA)

(xi)

B13 NEW ITERATIVE APPROXIMATION METHODS FOR A 36COUNTABLEFAMILY OF NONEXPANSIVE MAPPINGS INBANACH SPACESKAMONRAT NAMMANEE AND RABIAN WANGKEEREE$1 B 14$ A NEW GENERALIZED SYSTEM VARIATIONAL INEQUALITY 37WITH DIFFERENT MAPPING IN BANACH SPACESN.ONJAI-UEA AND P.KUMAM$1 B 15$ COMMON FIXED POINTS OF A FINITE FAMILY OF38MULTIVALUEDQUASI- NONEXPANSIVE MAPPINGSIN UNIFORMLY CONVEX BANACH SPACESAUNYARAT BUNYAWAT AND SUTHEP SUANTAI
1 B 16 A VISCOSITY HYBRID STEEPEST-DESCENT METHODS 39FOR A SYSTEM OF EQUILIBRIUM PROBLEMS ANDFIXED POINT FOR AN INFINITE FAMILY OF STRICTLYPSEUDO-CONTRACTIVE MAPPINGSUAMPORN WITTHAYARAT, JONG KYU KIM AND POOM KUMAM
$1 B 17$ HYBRID ALGORITHMS FOR MINIMIZATON PROBLEMS OVER 40
THE SOLUTIONS OF GEMERALIZED MIXED EQUILIBRIUM ANDVARIATIONAL INCLUSION PROBLEMST.JITPEERA AND P.KUMAM
1B18 THE STRONG EKELAND VARIATIONAL PRINCIPLE FOR 41GENERALIZED DISTANCE ON COMPLETE METRIC SPACESSOMYOT PLUBTIENG AND THIDAPORN SEANGWATTANA
PARALLEL SESSIONS HALL B-2 42
2B01 ON COMMON SOLUTIONS FOR FIXED POINT PROBLEMS OF 43
TWOINFINITE FAMILIES OF STRICTLY PSEUDOCONTRACTIVEMAPPINGS AND THE SYSTEM OF COCOERCIVEQUASIVARIATIONAL INCLUSIONS PROBLEMS IN HILBERTSPACESPATTANAPONG TIANCHAI
2B02 FIXED POINT PROBLEMS OF RELATIVELY NONEXPANSIVE 44MAPPINGS AND EQUILIBRIUM PROBLEMSWEERAYUTH NILSRAKOO
2B03 STRONG CONVERGENCE BY A HYBRID ALGORITHM FOR 45SOLVING EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEMOF A LIPSCHITZ PSEUDO-CONTRACTION IN HILBERT SPACESAPISIT JARERNSUK AND KASAMSUK UNG CHITTRAKOOL
2B04 CONVERGENCE THEOREMS OF ITERATIVE ALGORITHMS 46FOR PSEUDOCONTRACTION SEMIGROUPS IN BANACH SPACESRABIAAN WANGKEEREE AND PAKKAPON PREECHASILP
2B05 RATE OF CONVERGENCE OF MULTISTEP ITERATIVE METHODS 47
FOR CONTINUOUS MAPPINGS ON AN ARBITARY INTERVALWITHUN PHUENGRATTANA* AND SUTHEP SUANTAI2B06 VARIATIONAL INEQUALITIES FOR SET-VALUED MAPPINGS48
IN GENERALIZED CONVEX SPACESKANOKWAN SITTHITHAKERNGKIET AND SOMYOT PLUVERENG
2 B 07 STRONG CONVERGENCE OF MODIFIED HALPERN 49ITERATIONS IN CAT(0) SPACESASAWATHEP CUNTAVEPANIT AND BANCHA PANYANAK
2B08 INTERACTION THE BURGERS' EQUATION WITH FINITE 50DIFFERENCE SCHEME2B09 ON PPQ-INJECTIVE AND PQP-INJECTIVE MODULES51N.GOONWISES AND S.WONGWAI
2B10 A NOTE ON QUASI-SMALL P-INJECTIVE MODULES 52S.WONGWAI AND P.YAUDSAUN
2B11 A GENERAL ITERATIVE ALGORITHMS FOR HIERARCHICAL 53FIXED POINTS APPROACH TO VARIATIONAL INEQUALITIESNOPPARAT WAIROJJANA AND POOM KUMAM
2B12 AN APPROXIMATION METHOD FOR FIXED POINTS OF 54MULTIVALUED NONEXPANSIVE MAPPINGS IN BANACHSPACESHOSSEIN DEHGHAN (IRAN)
2 B13 APPROXIMATION METHOD FOR GENERALIZED MIXED 55EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMSFOR A COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGSSUTEE CHAIYASIL AND SUTHEP SUANTAI2B14 EXISTENCE THEOREMS OF FUZZY VARIATIONAL INEQUALITY 56PROBLEMS ON UNIFORMLY PROX-RELUGAR SETSNARIN PETROT AND JITTPORN SUWANNAWIT
2B15 A NEW GENERAL ITERATIVE METHOD FOR SOLUTION OF 57
A NEW GENERAL SYSTEM OF VARIATIONAL INCLUSIONS FORNONEXPANSIVE SEMIGROUPS IN BANACH SPACESPONGSAKORN SUNTHRAYUTH AND POOM KUMAM

(xiv)

2B16 A HYBRID ITERATIVE SCHEME FOR COUNTABLE FAMILIES 58
OF ASYMPTOTICALLY RELATIVELY NONEXPANSIVEMAPPINGS AND SYSTEM OF EQUILIBRIUM PROBLEMS
IN BANACH SPACES
KRIENGSAK WATTANA WITOON AND POOM KUMAM
2B17 AN APPROXIMATION OF A COMMON FIXED POINT OF 59NONEXPANSIVE MAPPINGS IN STRICTLY CONVEX BANACH
SPACESWATCHARPONG ANAKKAMATEE
2B18 FLXED PONT THEOREM FOR GENERALIZED (Ψ, φ)-WEAK 60CONTRACTION MAPING IN CONE METRIC SPACESP.CHAIPUNYA AND P.KUMAM
List of Participants 61

2B10: 9 July 2011

Time : 11.10-11.30

THE $5^{\text {th }}$ CONFERENCE ON FIXED POINT THEORY AND APPLICATIONS

Faculty of Science, Lampang Rajabhat University July 8-9, 2011

A NOTE ON QUASI-SMALL P-INJECTIVE MODUEES

```
S. WONGWAI ' AND P. YAUDSAUN }\mp@subsup{}{}{2
```

Let M be a right R-module. A right R-module N is called M-small principally injective (briefly, M-small P-injective) if, every R-homomorphism from an M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N. In this paper we give some characterizations and properties of quasi-small principally injective modules.

1 Department of Mathematics, Faculty of Science and Technology, Rajamangala Unversity of Technology Thanyabura. Pathumthani 12110, Thalland

2 Yamsard School Rangst Swaipracharart (Klong 4), Rangsit - Nakhon Nayok Road, Pathum Thani 12150, Thailand

E-mail address: vsarunchotmail,con (S. Wongwai), cajoke63 Ohotmail.com (P. Yaudsaun)

[^0]
Curriculum Vitae

[^0]: 2000 Mathematics Subject Classification. 16D50, 16D70, 16 D 80.
 Key words and phrases. Quasi-small P-injective Modules and Endomorphism Rings.
 Topics: Fixed Point Theory and its Applications

