Comparison of granular activated carbon bio-sorption and advanced oxidation processes in the treatment of leachate effluent

Author(s):
Abdul, JM (Abdul, Javeed Mohammed)\(^1\); Vigneswaran, S (Vigneswaran, Saravanamuthu)\(^1\); Shon, HK (Shon, Ho Kyong)\(^1\); Nathaporn, A (Nathaporn, Areerachakul)\(^2\); Kandasamy, J (Kandasamy, Jaya)\(^1\)

Source:

Abstract:
Landfill leachate is a toxic effluent of a decomposing landfill that is produced when rainwater percolates through the landfill leaching out contaminants and pollutants. Untreated leachate is a potential source for the contamination of soil, surface and ground water. In this study, the treatment processes such as granular activated carbon (GAC) adsorption/bio-sorption (batch), and advanced oxidation processes (AOP) viz. photocatalysis and Fenton's process were evaluated and compared by using synthetic landfill leachate (SLL) as a contaminant. TiO(2) was used as a catalyst in photocatalysis, and Fenton's reagent (H(2)O(2)/Fe(+2)) was used in Fenton's process. The degradation of SLL effluent by the three above-mentioned processes was characterized by the % TOC removal. The % TOC removed by photocatalysis, Fenton oxidation and bio-sorption (which includes adsorption and biodegradation) was 30, 60 and 85%, respectively. The bio-sorption increased with the increasing GAC dose. The optimum dose of Fenton's reagent in advanced oxidation was 15 and 400 milli moles of Fe(+2) and H(2)O(2), respectively. The Fenton's process showed faster degradation kinetics compared to biodegradation and photocatalysis.

Addresses:
1. Univ Technol Sydney, Fac Engn, Sydney, NSW 2007, Australia
2. Rajamangala Univ Technol, Thanyaburi, Pathumtani, Thailand

แหล่งอ้างอิง Web of Science